Tuning Deviation Heatmap

Deviation Table

P1 m2 M2 m3 M3 P4 A4/d5 P5 m6 M6 m7 M7

Make Interval Pure

m2 M2 m3 M3 P4 A4/d5 P5 m6 M6 m7 M7

Play Chord

dim m M aug dim7 m7b5 m7 M7

Tuning Vectors

Paste the vector in the text box at the top of this page to explore the temperament.
Source: Scala Archive.


12-17: 12 out of 17-tET, chain of fifths
[70.5882, 141.1765, 282.3529, 352.9412, 494.1177, 564.7059, 635.2941, 776.4706, 847.0588, 988.2353, 1058.8235]

12-19: 12 out of 19-tET scale from Mandelbaum's dissertation
[63.1579, 189.4737, 252.6316, 378.9474, 505.2632, 568.4211, 694.7368, 757.8947, 884.2105, 947.3684, 1073.6842]

12-22: 12 out of 22-tET, chain of fifths
[163.6364, 218.1818, 381.8182, 436.3636, 490.9091, 654.5454, 709.0909, 872.7273, 927.2727, 1090.9091, 1145.4545]

12-22h: Hexachordal 12-tone scale in 22-tET
[109.0909, 218.1818, 327.2727, 436.3636, 490.9091, 600.0, 709.0909, 818.1818, 927.2727, 1036.3636, 1145.4545]

12-27: 12 out of 27, Herman Miller's Galticeran scale
[133.3333, 222.2222, 311.1111, 400.0, 533.3333, 622.2222, 711.1111, 800.0, 933.3333, 1022.2222, 1111.1111]

12-31: 12 out of 31-tET, meantone Eb-G#
[77.4193, 193.5484, 309.6774, 387.0968, 503.2258, 580.6452, 696.7742, 774.1935, 890.3226, 1006.4516, 1083.871]

12-31_11: 11-limit 12 out of 31-tET, George Secor
[38.7097, 193.5484, 270.9677, 387.0968, 464.5161, 541.9355, 696.7742, 774.1935, 890.3226, 967.7419, 1083.871]

12-43: 12 out of 43-tET (1/5-comma meantone)
[83.7209, 195.3488, 306.9767, 390.6977, 502.3256, 586.0465, 697.6744, 781.3954, 893.0233, 1004.6512, 1088.3721]

12-46: 12 out of 46-tET, diaschismic
[104.3478, 208.6957, 286.9565, 391.3043, 495.6522, 600.0, 704.3478, 808.6957, 886.9565, 991.3043, 1095.6522]

12-46p: 686/675 comma pump scale in 46-tET
[130.4348, 260.8696, 391.3043, 443.4783, 521.7391, 573.913, 704.3478, 834.7826, 965.2174, 1069.5652, 1095.6522]

12-50: 12 out of 50-tET, meantone Eb-G#
[72.0, 192.0, 312.0, 384.0, 504.0, 576.0, 696.0, 768.0, 888.0, 1008.0, 1080.0]

12-79mos159et: 12-tones out of 79 MOS 159ET, Splendid Beat Rates Based on Simple Frequencies version, C=262hz
[91.6892, 197.5352, 302.3751, 392.9089, 498.045, 589.3425, 701.955, 792.0767, 897.524, 1003.0965, 1093.5469]

12-yarman24a: 12-tones out of Yarman24a, circulating in the style of Rameau's Modified Meantone Temperament
[84.36, 192.18, 292.18, 386.3137, 498.045, 584.0791, 696.09, 788.27, 888.27, 996.09, 1088.2687]

12-yarman24b: 12-tones out of Yarman24b, circulating in the style of Rameau's Modified Meantone Temperament
[84.36, 192.18, 292.18, 386.3137, 498.045, 584.3587, 696.09, 788.27, 888.27, 996.09, 1088.2687]

12-yarman24c: 12-tones out of Yarman24c, circulating in the style of Rameau's Modified Meantone Temperament
[85.0589, 191.7708, 292.413, 383.5415, 498.045, 581.3819, 695.8854, 788.736, 887.6561, 996.09, 1085.4965]

12-yarman24d: 12-tones out of Yarman24d, circulating in the style of Rameau's Modified Meantone Temperament
[83.3298, 190.8486, 291.8366, 381.6971, 498.045, 579.0764, 695.4243, 787.5832, 886.2729, 996.09, 1083.6521]

abell1: Ross Abell's French Baroque Meantone 1, a'=520 Hz
[78.0, 194.0, 271.0, 387.0, 464.0, 581.0, 697.0, 775.0, 891.0, 968.0, 1084.0]

abell2: Ross Abell's French Baroque Meantone 2, a'=520 Hz
[92.0, 206.0, 287.0, 402.0, 494.0, 596.0, 704.0, 789.0, 906.0, 989.0, 1099.0]

abell3: Ross Abell's French Baroque Meantone 3, a'=520 Hz
[92.002, 199.0034, 283.0002, 398.0001, 504.0013, 594.003, 702.0017, 787.3588, 901.0017, 985.0027, 1096.0018]

abell4: Ross Abell's French Baroque Meantone 4, a'=520 Hz
[86.0, 196.0, 284.0, 392.0, 484.0, 588.0, 698.0, 784.0, 894.0, 984.0, 1090.0]

abell5: Ross Abell's French Baroque Meantone 5, a'=520 Hz
[105.0, 213.0, 303.0, 408.0, 501.0, 606.0, 716.0, 804.0, 909.0, 1002.0, 1107.0]

abell6: Ross Abell's French Baroque Meantone 6, a'=520 Hz
[99.0, 198.0, 303.0, 402.0, 501.0, 600.0, 699.0, 798.0, 903.0, 1002.0, 1101.0]

abell7: Ross Abell's French Baroque Meantone 7, a'=520 Hz
[102.0, 204.0, 294.0, 396.0, 498.0, 600.0, 702.0, 804.0, 894.0, 996.0, 1098.0]

abell8: Ross Abell's French Baroque Meantone 8, a'=520 Hz
[104.0, 206.0, 302.0, 400.0, 504.0, 606.0, 702.0, 800.0, 904.0, 1006.0, 1102.0]

abell9: Ross Abell's French Baroque Meantone 9, a'=520 Hz
[93.0, 198.0, 292.0, 403.0, 497.0, 596.0, 700.0, 789.0, 900.0, 994.0, 1100.0]

agricola: Agricola's Monochord, Rudimenta musices (1539)
[92.1787, 203.91, 296.0887, 407.82, 498.045, 590.2237, 701.955, 794.1337, 905.865, 996.09, 1109.775]

agricola_p: Agricola's Pythagorean-type Monochord, Musica instrumentalis deudsch (1545)
[109.775, 203.91, 313.685, 407.82, 498.045, 607.82, 701.955, 811.73, 905.865, 1015.64, 1109.775]

alembert: Jean-Le Rond d'Alembert modified meantone (1752)
[78.1489, 193.1569, 281.5705, 386.3137, 493.8568, 580.8705, 696.5784, 775.4273, 889.7353, 987.7137, 1083.5921]

alembert-rousseau: d'Alembert and Rousseau tempérament ordinaire (1752/1767)
[86.3137, 193.1569, 288.2687, 386.3137, 496.0896, 586.3137, 696.5784, 786.3137, 889.7353, 992.1791, 1086.3137]

alembert-rousseau2: d'Alembert and Rousseau (1752-1767) different interpretation
[86.3137, 193.5784, 289.7362, 386.3137, 496.5788, 586.3137, 697.0, 786.3137, 890.1569, 993.1575, 1086.3137]

alves_12: Bill Alves, tuning for "Metalloid", TL 12-12-2007
[35.6968, 203.91, 266.8709, 435.0841, 470.7809, 533.7418, 701.955, 737.6518, 933.1291, 968.8259, 1137.0391]

ammerbach: Elias Mikolaus Ammerbach (1571), from Ratte: Temperierungspraktiken im süddeutschen Orgelbau p. 412
[86.315, 198.045, 302.9325, 392.18, 498.045, 590.225, 701.955, 784.36, 894.135, 999.0225, 1092.18]

ammerbach1: Elias Mikolaus Ammerbach (1571, 1583) interpretation 1, Ratte, 1991
[89.685, 197.91, 300.135, 395.82, 498.045, 593.73, 701.955, 791.64, 893.865, 1002.09, 1097.775]

ammerbach2: Elias Mikolaus Ammerbach (1571, 1583) interpretation 2, Ratte, 1991
[85.685, 197.91, 303.135, 391.82, 498.045, 589.73, 701.955, 783.64, 893.865, 999.09, 1091.775]

arch_mult: Multiple Archytas
[62.9609, 111.7313, 386.3137, 435.0841, 498.045, 561.0059, 701.955, 764.9159, 813.6863, 1088.2687, 1137.0391]

arch_ptol: Archytas/Ptolemy Hybrid 1
[62.9609, 111.7313, 182.4037, 294.135, 498.045, 561.0059, 701.955, 764.9159, 813.6863, 884.3587, 996.09]

arch_ptol2: Archytas/Ptolemy Hybrid 2
[62.9609, 111.7313, 203.91, 315.6413, 498.045, 561.0059, 701.955, 764.9159, 813.6863, 905.865, 1017.5963]

arch_sept: Archytas Septimal
[62.9609, 111.7313, 203.91, 294.135, 498.045, 561.0059, 701.955, 764.9159, 813.6863, 905.865, 996.09]

archytas12: Archytas[12] (64/63) hobbit, 9-limit minimax
[98.0992, 217.542, 315.6413, 393.1297, 491.229, 610.6718, 708.771, 806.8703, 926.3131, 982.4579, 1101.9008]

archytas12sync: Archytas[12] (64/63) hobbit, sync beating
[96.4589, 222.9926, 319.4515, 392.0448, 488.5037, 615.0374, 711.4963, 807.9552, 934.4889, 977.0074, 1103.5411]

ares12: Ares[12] (64/63&100/99) hobbit, POTE tuning
[98.8624, 172.077, 318.2361, 391.4507, 490.3132, 563.5278, 709.6869, 808.5493, 881.7639, 1027.923, 1101.1376]

ares12opt: Lesfip scale derived from Ares[12], 13 cents, 11-limit
[98.476, 165.7117, 321.4016, 392.1046, 485.6965, 551.0564, 711.7109, 809.4646, 871.6577, 1030.0551, 1099.7219]

ariel1: Ariel 1
[133.2376, 203.91, 315.6413, 386.3137, 498.045, 568.7174, 701.955, 813.6863, 884.3587, 1017.5963, 1088.2687]

ariel2: Ariel 2
[111.7313, 182.4037, 315.6413, 386.3137, 498.045, 568.7174, 701.955, 813.6863, 884.3587, 1017.5963, 1088.2687]

ariel3: Ariel's 12-tone JI scale
[111.7313, 182.4037, 294.135, 364.8074, 498.045, 568.7174, 701.955, 813.6863, 884.3587, 996.09, 1066.7624]

aron-neidhardt: Aron-Neidhardt equal beating well temperament
[90.225, 193.328, 294.135, 386.3566, 498.045, 588.27, 697.4627, 792.18, 889.8922, 996.09, 1086.315]

artusi: Clavichord tuning of Giovanni Maria Artusi (1603). 1/4-comma with mean semitones
[96.578, 193.157, 289.735, 386.3137, 503.422, 600.0, 696.578, 793.157, 889.735, 986.314, 1082.892]

artusi2: Artusi's tuning no. 2, 1/6-comma meantone with mean semitones
[98.3705, 196.741, 295.1115, 393.482, 501.629, 600.0, 698.371, 796.7415, 895.112, 993.4825, 1091.853]

artusi3: Artusi's tuning no. 3
[77.0077, 182.4037, 298.0061, 403.4021, 508.7981, 585.8058, 691.2019, 768.2096, 873.6056, 989.208, 1094.604]

atomschis: Atom Schisma Scale
[99.9936, 200.0026, 299.9962, 400.0051, 499.9987, 599.9923, 700.0013, 799.9949, 900.0038, 999.9974, 1100.0064]

augdimhextrug: Sister wakalix to Wilson class
[119.4428, 155.1396, 315.6413, 386.3137, 505.7565, 582.5122, 701.955, 772.6274, 933.1291, 968.8259, 1088.2687]

augdommean: August-dominant-meantone Fokker block
[62.9609, 203.91, 266.8709, 386.3137, 498.045, 582.5122, 701.955, 764.9159, 884.3587, 968.8259, 1088.2687]

avicenna_diff: Difference tones of Avicenna's Soft diatonic reduced by 2/1
[53.2729, 155.1396, 203.91, 297.513, 470.7809, 590.2237, 701.955, 737.6518, 905.865, 968.8259, 1172.7359]

awraamoff: Awraamoff Septimal Just (1920)
[203.91, 231.1741, 315.6413, 386.3137, 470.7809, 498.045, 701.955, 813.6863, 933.1291, 968.8259, 1088.2687]

b12_17: 12-tET approximation with minimal order 17 beats
[98.9546, 203.91, 297.513, 386.3137, 498.045, 603.0004, 701.955, 800.9096, 884.3587, 996.09, 1101.0454]

bagpipe1: Bulgarian bagpipe tuning
[66.0, 202.0, 316.0, 399.0, 509.0, 640.0, 706.0, 803.0, 910.0, 1011.0, 1092.0]

bailey_well: Paul Bailey's proportional beating modern temperament (1993)
[92.165, 195.19, 296.055, 391.68, 499.945, 590.17, 698.695, 794.06, 893.785, 997.95, 1093.675]

bailey_well2: Paul Bailey's modern well temperament (2002)
[92.515, 195.69, 296.455, 392.18, 500.445, 590.57, 699.995, 794.46, 894.285, 998.45, 1094.175]

bailey_well3: Paul Bailey's equal beating well temperament
[90.225, 192.9159, 294.135, 389.7617, 498.045, 588.27, 696.1931, 792.18, 891.8469, 996.09, 1086.315]

banchieri: Adriano Banchieri, in L'Organo suonarino (1605)
[92.1787, 203.91, 315.6413, 407.82, 498.045, 590.2237, 701.955, 794.1337, 905.865, 1017.5963, 1109.775]

barca: Barca
[92.18, 197.3933, 296.09, 393.4833, 498.045, 590.225, 698.045, 794.135, 895.4383, 996.09, 1091.5283]

barca_a: Barca A
[92.18, 200.0, 296.09, 397.3933, 498.045, 593.4833, 701.955, 794.135, 899.3483, 998.045, 1095.4383]

barnes: John Barnes' temperament (1977) made after analysis of Wohltemperierte Klavier, 1/6 P
[94.135, 196.09, 298.045, 392.18, 501.955, 592.18, 698.045, 796.09, 894.135, 1000.0, 1094.135]

barnes2: John Barnes' temperament (1971), 1/8 P
[96.09, 198.045, 297.0675, 396.09, 500.9775, 594.135, 699.0225, 798.045, 897.0675, 999.0225, 1095.1125]

barton: Jacob Barton, tetratetradic scale on 6:7:9:11
[116.2338, 150.6371, 203.91, 266.8709, 417.508, 551.3179, 701.955, 852.5921, 898.7259, 968.8259, 1049.3629]

baumeister: In 1988 observed temperament of organ in Maihingen by Johann Martin Baumeister (1737)
[84.9465, 199.218, 306.4515, 386.706, 500.9775, 582.9915, 701.955, 781.0365, 896.481, 994.3305, 1085.7285]

bedos: Temperament of Dom François Bédos de Celles (1770), after M. Tessmer
[74.9737, 191.0062, 311.34, 386.3137, 502.3463, 577.3199, 697.6537, 772.6274, 888.66, 1008.9938, 1083.9675]

bellingwolde: Current 1/6-P. comma mod.mean of Freytag organ in Bellingwolde. Ortgies,2002
[90.225, 196.09, 301.955, 392.18, 501.955, 588.27, 698.045, 796.09, 894.135, 1000.0, 1090.225]

bellingwolde_org: Original tuning of the Freytag organ in Bellingwolde
[90.225, 196.09, 301.955, 392.18, 501.955, 588.27, 701.955, 796.09, 894.135, 1000.0, 1094.135]

bemetzrieder2: Anton Bemetzrieder temperament nr. 2 (1808), is Vallotti in F#
[105.865, 203.91, 301.955, 407.82, 498.045, 607.82, 701.955, 803.91, 905.865, 1000.0, 1109.775]

bendeler: J. Ph. Bendeler well temperament
[90.225, 194.63, 294.135, 392.45, 498.045, 588.27, 701.955, 792.18, 890.495, 996.09, 1094.405]

bendeler-b: Die Brüche nach Bendeler, Jerzy Erdmann: Ein Rechenmodell für historische Mensurationsmethoden, p. 342
[90.225, 187.5891, 294.135, 391.4991, 498.045, 588.27, 692.7732, 792.18, 889.5441, 996.09, 1093.4541]

bendeler1: Bendeler I temperament (c.1690), three 1/3P comma tempered fifths
[90.225, 188.27, 294.135, 392.18, 498.045, 588.27, 694.135, 792.18, 890.225, 996.09, 1094.135]

bendeler2: Bendeler II temperament (c.1690), three 1/3P comma tempered fifths
[90.225, 196.09, 294.135, 392.18, 498.045, 596.09, 694.135, 792.18, 890.225, 996.09, 1094.135]

bendeler3: Bendeler III temperament (c.1690), four 1/4P tempered fifths
[96.09, 192.18, 294.135, 396.09, 498.045, 594.135, 696.09, 798.045, 894.135, 996.09, 1092.18]

bermudo: Temperament of Fr. Juan Bermudo (1555)
[100.1029, 200.2058, 294.135, 400.4116, 498.045, 598.1479, 701.955, 802.0579, 902.1608, 996.09, 1102.3666]

bermudo-v: Bermudo's vihuela temperament, 3 1/6P, 1 1/2P comma
[102.8835, 200.307, 294.135, 400.6215, 498.045, 600.9285, 701.955, 804.8385, 902.262, 996.09, 1102.5765]

bermudo2: Temperament of Fr. Juan Bermudo, interpr. of Franz Josef Ratte: Die Temperatur der Clavierinstrumente, p. 227
[100.0, 200.0, 294.135, 400.0, 498.045, 598.045, 701.955, 801.955, 901.955, 996.09, 1101.955]

bertier: Jérôme Bertier, elliptical temperament (2014)
[94.6588, 196.6138, 298.5688, 393.2277, 500.5238, 593.2277, 698.5688, 796.6138, 894.6588, 1000.0, 1092.7038]

bertier2: Jérôme Bertier, elliptical temperament (2015)
[100.3799, 200.5216, 300.3799, 400.0, 499.4743, 598.9502, 698.5666, 798.4249, 898.5666, 998.9487, 1099.474]

bethisy: Bethisy temperament ordinaire, see Pierre-Yves Asselin: Musique et temperament
[86.804, 193.157, 288.758, 386.3137, 496.253, 586.804, 696.578, 786.803, 889.735, 992.506, 1086.314]

biezen: Jan van Biezen modified meantone (1974)
[86.8021, 193.1569, 299.5116, 386.3137, 503.4216, 584.8471, 696.5784, 788.7571, 889.7353, 1001.4666, 1088.2687]

biezen2: Jan van Biezen 2, also Siracusa (early 17th cent.), modified 1/4 comma MT
[86.8037, 193.1575, 294.135, 386.315, 498.045, 584.8487, 696.5788, 788.7587, 889.7363, 996.09, 1082.8937]

biezen3: Jan van Biezen 3 (2004) (also called Van Biezen I)
[90.225, 196.09, 298.045, 392.18, 501.955, 588.27, 698.045, 792.18, 894.135, 1000.0, 1090.225]

biezen_chaumont: Jan van Biezen, after Chaumont, 1/8 Pyth. comma. Lochem, Hervormde Gudulakerk (1978)
[99.0225, 198.045, 302.9325, 396.09, 500.9775, 600.0, 699.0225, 798.045, 897.0675, 1001.955, 1095.1125]

biggulp: Big Gulp
[53.2729, 203.91, 266.8709, 386.3137, 470.7809, 551.3179, 701.955, 755.2279, 905.865, 968.8259, 1088.2687]

biggulp-bunya: Biggulp tempered in POTE-tuned 13-limit bunya
[62.4012, 207.0864, 269.4876, 382.9722, 476.5741, 558.858, 703.5432, 765.9444, 910.6296, 973.0308, 1086.5154]

bigler12: Kurt Bigler, JI organ tuning, TL 28-3-2004
[70.6724, 203.91, 266.8709, 386.3137, 498.045, 551.3179, 701.955, 772.6274, 884.3587, 968.8259, 1088.2687]

bihexany: Hole around [0, 1/2, 1/2, 1/2]
[101.8667, 266.8709, 386.3137, 417.508, 536.9508, 701.955, 803.8217, 884.3587, 968.8259, 1034.9958, 1119.463]

bihexany-octoid: Octoid tempering of bihexany, 600-equal
[102.0, 268.0, 386.0, 418.0, 536.0, 702.0, 804.0, 884.0, 970.0, 1034.0, 1120.0]

bihexanymyna: Myna tempered bihexany, 89-tET
[107.8652, 269.6629, 391.0112, 417.9775, 539.3258, 701.1236, 808.9888, 889.8876, 970.7865, 1038.2023, 1119.1011]

billeter: Organ well temperament of Otto Bernhard Billeter
[93.1575, 198.045, 297.0675, 392.18, 500.9775, 591.2025, 699.0225, 795.1125, 895.1125, 999.0225, 1092.18]

billeter2: Bernhard Billeter's Bach temperament (1977/79), 1/12 and 7/24 Pyth. comma
[92.18, 200.0, 296.09, 390.225, 500.0, 590.225, 700.0, 794.135, 895.1125, 998.045, 1090.225]

blueji-cataclysmic: John O'Sullivan's Blueji tempered in 13-limit POTE-tuned cataclysmic
[112.6035, 204.4326, 317.036, 385.1802, 497.7837, 589.6128, 702.2163, 814.8198, 882.9639, 1019.2523, 1087.3965]

bluesrag: Ragismic tempered bluesji in 8419-tET
[133.4125, 182.3019, 386.2692, 449.127, 498.0164, 653.0942, 680.3183, 835.3961, 884.2855, 947.1434, 1151.1106]

bobrova: Bobrova Cheerful 12 WT based on *19 EDL
[93.603, 192.5576, 297.513, 391.116, 498.045, 595.026, 696.6034, 795.558, 894.5126, 999.468, 1093.071]

bockhorn: Modified 1/8-comma temperament after Bockhorn
[88.5493, 192.18, 296.8161, 390.7277, 498.045, 589.2754, 696.09, 787.8231, 891.4538, 996.09, 1090.0016]

boomsliter: Boomsliter & Creel basic set of their referential tuning. [1 3 5 7 9] x u[1 3 5] cross set
[203.91, 266.8709, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 968.8259, 1017.5963]

bossart-muri: Victor Ferdinand Bossart's Modified meantone (1743/44), organ in Klosterkirche Muri
[80.45, 195.1125, 305.865, 388.27, 501.955, 582.405, 699.0225, 779.4725, 891.2025, 1000.9775, 1085.3375]

bossart1: Victor Ferdinand Bossart (erste Anweisung) organ temperament (1740?)
[90.225, 198.045, 308.7975, 390.225, 503.91, 588.27, 699.0225, 794.135, 894.135, 1007.82, 1089.2475]

bossart2: Victor Ferdinand Bossart (zweite Anweisung) organ temperament (1740?)
[94.135, 195.1125, 308.7975, 394.135, 503.91, 592.18, 699.0225, 796.09, 894.135, 1004.8875, 1096.09]

bossart3: Victor Ferdinand Bossart (dritte Anweisung) organ temperament (1740?)
[93.1575, 198.045, 305.865, 390.225, 503.91, 591.2025, 699.0225, 797.0675, 894.135, 1004.8875, 1089.2475]

boulliau: Monsieur Boulliau's irregular temp. (1373), reported by Mersenne in 1636
[98.9546, 203.91, 302.8646, 407.82, 498.045, 596.9996, 701.955, 800.9096, 905.865, 996.09, 1095.0446]

brac: Circulating temperament with simple beat ratios: 4 3/2 4 3/2 2 2 177/176 4 3/2 2 3/2 2
[92.2468, 192.2471, 296.1568, 389.8627, 500.0668, 579.6221, 696.0237, 794.2018, 892.4317, 998.1118, 1085.7674]

breed-bluesji: 7-limit JI version of Graham Breed's Blues scale
[133.2376, 182.4037, 386.3137, 449.2746, 498.045, 653.1846, 680.4487, 835.1926, 884.3587, 947.3196, 1151.2296]

breedball3: Third Breed ball around 49/40-7/4
[35.6968, 84.4672, 119.4428, 351.3381, 386.3137, 582.5122, 617.4878, 701.955, 737.6518, 933.1291, 968.8259]

breedt2: Graham Breed's 1/5 P temperament, TL 10-06-99
[94.917, 199.218, 298.827, 393.744, 502.737, 592.962, 701.955, 796.872, 896.481, 1000.782, 1095.699]

breedt3: Graham Breed's other 1/4 P temperament, TL 10-06-99
[96.09, 198.045, 300.0, 396.09, 503.91, 594.135, 701.955, 798.045, 894.135, 1001.955, 1092.18]

bremmer: Bill Bremmer's Shining Brow (1998)
[95.525, 197.49, 299.015, 395.04, 500.005, 595.03, 699.495, 798.52, 897.485, 998.51, 1095.535]

bremmer_ebvt1: Bill Bremmer EBVT I temperament (2011)
[94.8725, 197.059, 297.8, 394.2189, 498.045, 592.9175, 699.3119, 796.827, 896.203, 999.1, 1096.1739]

bremmer_ebvt2: Bill Bremmer EBVT II temperament (2011)
[94.8725, 197.059, 297.8, 395.7956, 498.045, 592.9175, 699.3119, 796.827, 896.203, 999.1, 1096.1739]

bremmer_ebvt3: Bill Bremmer EBVT III temperament (2011)
[94.8725, 197.059, 297.8, 395.7956, 498.045, 595.8974, 699.3119, 796.827, 896.203, 999.1, 1096.1739]

broadwood: Broadwood's Best (Ellis tuner number 4), Victorian (1885)
[95.965, 197.99, 297.955, 392.98, 498.945, 594.97, 699.995, 796.96, 894.985, 998.95, 1093.975]

broadwood2: Broadwood's Usual (Ellis tuner number 2), Victorian (1885)
[94.965, 196.99, 296.955, 391.98, 498.945, 593.97, 699.995, 795.96, 893.985, 997.95, 1092.975]

broadwood3: John Broadwood´s 1832 unequal temperament compiled by A.Sparschuh, a=403.0443
[94.1323, 198.3232, 302.5148, 396.6471, 500.8381, 594.9703, 699.1616, 793.3164, 897.4848, 1001.6761, 1095.8085]

broeckaert-pbp: Johan Broeckaert-Devriendt, PBP temperament (2007). Equal PBP for C-E and G-B
[90.225, 195.2527, 294.135, 386.8718, 498.045, 588.27, 699.4431, 792.18, 891.0623, 996.09, 1086.315]

broekaert1: Johan Broekaert, low sum beating equal beating temperament (2021), 1/1=F
[87.0726, 194.8845, 292.3174, 389.5651, 497.413, 584.5167, 696.9611, 789.8286, 891.2939, 994.9839, 1085.8738]

broekaert2: Johan Broekaert, equal beating Bach temperament, 3 just fifths (2021), 1/1=F
[87.4807, 195.7871, 291.3907, 390.1481, 497.0909, 585.5257, 698.1121, 789.4357, 892.019, 994.42, 1086.9887]

bruder: Ignaz Bruder organ temperament (1829), systematised by Ratte, p. 406
[95.1125, 202.9325, 297.0675, 391.2025, 499.0225, 593.6463, 701.4662, 796.09, 897.0675, 998.045, 1092.18]

bruder-vier: Ignaz Bruder organ temperament (1829) according to P. Vier
[95.0, 200.0, 295.0, 389.0, 499.0, 593.5, 698.5, 796.0, 897.0, 998.0, 1092.0]

burt1: W. Burt's 13diatsub #1
[67.9002, 138.5727, 212.2533, 289.2097, 454.2139, 543.0146, 636.6177, 800.9096, 840.5277, 952.2589, 1071.7018]

burt10: W. Burt's 19enhsub #10
[22.9306, 46.169, 69.7235, 93.603, 528.6871, 591.648, 656.9854, 673.7124, 690.6026, 707.6592, 724.8856]

burt11: W. Burt's 19enhharm #11
[475.1144, 492.3408, 509.3974, 526.2876, 543.0146, 608.352, 671.3129, 1106.397, 1130.2765, 1153.831, 1177.0694]

burt12: W. Burt's 19diatharm #12
[253.8049, 330.7613, 404.442, 475.1144, 543.0146, 608.352, 671.3129, 902.487, 1007.4424, 1106.397, 1153.831]

burt13: W. Burt's 23diatsub #13
[76.9564, 157.4934, 199.2119, 241.9606, 424.3643, 523.3189, 628.2743, 740.0056, 859.4484, 922.4093, 987.7467]

burt14: W. Burt's 23enhsub #14
[18.9208, 38.0506, 57.3942, 76.9564, 424.3643, 523.3189, 628.2743, 655.5384, 683.2388, 711.3895, 740.0056]

burt15: W. Burt's 23enhharm #15
[459.9944, 488.6105, 516.7612, 544.4616, 571.7257, 676.6811, 775.6357, 1123.0436, 1142.6058, 1161.9494, 1181.0792]

burt16: W. Burt's 23diatharm #16
[212.2533, 277.5907, 340.5516, 459.9944, 571.7257, 676.6811, 775.6357, 958.0394, 1000.7881, 1042.5066, 1123.0436]

burt2: W. Burt's 13enhsub #2
[16.727, 33.6173, 50.6739, 67.9002, 454.2139, 475.9908, 498.045, 520.3838, 543.0146, 787.2547, 1071.7018]

burt20: Warren Burt tuning for "Commas" (1993). 1/1=263 Hz, XH 16
[48.7704, 111.7313, 113.685, 203.91, 225.4163, 405.8663, 429.3263, 590.2237, 631.2826, 786.4222, 813.6863]

burt3: W. Burt's 13enhharm #3
[128.2982, 412.7453, 656.9854, 679.6162, 701.955, 724.0092, 745.7861, 1132.0998, 1149.3261, 1166.3827, 1183.273]

burt4: W. Burt's 13diatharm #4, see his post 3/30/94 in Tuning Digest #57
[128.2982, 247.7411, 359.4723, 464.4277, 563.3823, 656.9854, 745.7861, 910.7903, 987.7467, 1061.4273, 1132.0998]

burt5: W. Burt's 17diatsub #5
[104.9554, 216.6867, 336.1295, 464.4277, 603.0004, 676.6811, 753.6375, 834.1745, 918.6417, 1007.4424, 1101.0454]

burt6: W. Burt's 17enhsub #6
[25.6484, 51.6825, 78.114, 104.9554, 603.0004, 676.6811, 753.6375, 773.4232, 793.4377, 813.6863, 834.1745]

burt7: W. Burt's 17enhharm #7
[365.8255, 386.3137, 406.5623, 426.5768, 446.3625, 523.3189, 596.9996, 1095.0446, 1121.886, 1148.3175, 1174.3516]

burt8: W. Burt's 17diatharm #8, harmonics 16 to 32
[98.9546, 192.5576, 281.3583, 365.8255, 446.3625, 523.3189, 596.9996, 735.5723, 863.8705, 983.3133, 1095.0446]

burt9: W. Burt's 19diatsub #9
[46.169, 93.603, 192.5576, 297.513, 528.6871, 591.648, 656.9854, 724.8856, 795.558, 869.2387, 946.1951]

burt_fibo: Warren Burt, 3/2+5/3+8/5+etc. "Recurrent Sequences", 2002
[104.9554, 203.91, 303.1985, 386.3137, 470.7809, 570.8801, 670.1049, 701.955, 840.5277, 937.6317, 1037.0234]

buurman: Buurman temperament, 1/8-Pyth. comma, organ Doetinchem Gereformeerde Gemeentekerk
[93.1575, 198.045, 297.0675, 396.09, 500.9775, 594.135, 699.0225, 795.1125, 897.0675, 999.0225, 1095.1125]

c225cp: 225/224 comma pump scale in 197-tET
[115.736, 152.2843, 268.0203, 383.7563, 499.4924, 584.7716, 700.5076, 767.5127, 852.7919, 968.5279, 1084.264]

cantonpenta: Freivald's Canton scale in 13-limit pentacircle (351/350 and 364/363) temperament, 271-tET
[128.4133, 208.1181, 287.8229, 416.2362, 495.941, 575.6458, 704.059, 783.7638, 912.1771, 991.8819, 1071.5867]

carlos_harm: Carlos Harmonic & Ben Johnston's scale of 'Blues' from Suite f.micr.piano (1977) & David Beardsley's scale of 'Science Friction'
[104.9554, 203.91, 297.513, 386.3137, 470.7809, 551.3179, 701.955, 840.5277, 905.865, 968.8259, 1088.2687]

carlos_super: Carlos Super Just
[104.9554, 203.91, 315.6413, 386.3137, 498.045, 551.3179, 701.955, 840.5277, 884.3587, 968.8259, 1088.2687]

cauldron: Circulating temperament with two pure 9/7 thirds and 7 meantone, 2 slightly wide, 3 superpyth fifths
[70.3135, 189.2049, 291.9037, 378.4098, 505.3976, 567.6147, 694.6024, 781.1086, 883.8073, 1002.6988, 1073.0122]

chahargah: Chahargah in C
[100.0, 140.0, 300.0, 386.0, 498.0, 590.0, 702.0, 800.0, 840.0, 1000.0, 1100.0]

chalmers_ji1: Based loosely on Wronski's and similar JI scales, May 2, 1997.
[104.9554, 203.91, 297.513, 386.3137, 498.045, 603.0004, 701.955, 795.558, 884.3587, 999.468, 1088.2687]

chalmers_ji2: Based loosely on Wronski's and similar JI scales, May 2, 1997.
[104.9554, 203.91, 297.513, 386.3137, 498.045, 603.0004, 701.955, 806.9104, 905.865, 999.468, 1088.2687]

chalmers_ji3: 15 16 17 18 19 20 21 on 1/1, 15-20 on 3/2, May 2, 1997. See other scales
[111.7313, 216.6867, 315.6413, 409.2443, 498.045, 582.5122, 701.955, 813.6863, 918.6417, 1017.5963, 1111.1993]

chalmers_ji4: 15 16 17 18 19 20 on 1/1, same on 4/3, + 16/15 on 16/9
[111.7313, 216.6867, 315.6413, 409.2443, 498.045, 609.7763, 714.7317, 813.6863, 907.2893, 996.09, 1107.8213]

chaumont: Lambert Chaumont organ temperament (1695), 1st interpretation
[76.049, 193.1569, 290.909, 386.3137, 503.4216, 579.4706, 696.5784, 772.6274, 889.7353, 997.1653, 1082.8921]

chaumont2: Lambert Chaumont organ temperament (1695), 2nd interpretation
[83.5762, 195.3075, 289.8337, 390.615, 502.3463, 585.9225, 697.6537, 781.2299, 892.9612, 996.09, 1088.2687]

chin_12: Chinese scale, 4th cent.
[99.2, 199.5, 296.7, 398.0, 492.9, 595.2, 699.0, 790.9, 896.1, 984.9, 1091.4]

chin_lu: Chinese Lü scale by Huai Nan zi, Han era. Père Amiot 1780, Kurt Reinhard
[98.9546, 203.91, 315.6413, 394.3473, 498.045, 608.352, 701.955, 800.9096, 905.865, 1017.5963, 1106.397]

chin_lu2: Chinese Lü (Lushi chunqiu, by Lu Buwei). Mingyue: Music of the billion, p.67
[113.685, 203.91, 317.595, 407.82, 521.505, 611.73, 701.955, 815.64, 905.865, 1019.55, 1109.775]

chin_lu3: Chinese Lü scale by Ho Ch'êng-T'ien, reported in Sung Shu (500 AD)
[101.0, 200.0, 297.0, 398.0, 493.0, 596.0, 699.0, 791.0, 897.0, 985.0, 1092.0]

chin_lu3a: Chinese Lü scale by Ho Ch'êng-T'ien, calc. basis is "big number" 177147
[99.236, 199.5492, 296.7185, 398.0235, 492.8796, 594.1477, 699.0512, 790.9393, 896.0588, 984.8689, 1090.4947]

chin_lu4: Chinese Lü "749-Temperament"
[97.516, 199.2903, 296.8063, 398.5806, 496.0966, 597.8709, 699.6451, 797.1612, 898.9354, 996.4515, 1098.2257]

chin_shierlu: Old Chinese Lü scale, from http://en.wikipedia.org/wiki/Shi_Er_L%C3%BC
[113.685, 203.91, 270.8341, 407.82, 520.6758, 611.73, 701.955, 815.64, 905.865, 1019.4737, 1109.775]

choquel: Choquel/Barbour/Marpurg?
[70.6724, 203.91, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 772.6274, 884.3587, 1034.9958, 1088.2687]

circls12: Least squares circulating temperament
[79.7096, 198.2745, 285.4386, 390.2924, 495.1462, 582.3103, 700.8751, 780.5848, 894.9786, 990.2924, 1085.6062]

circos: [1, 3] weight range weighted least squares circulating temperament
[89.6175, 195.6332, 300.9842, 391.5286, 501.6989, 587.3255, 697.8246, 796.0075, 893.6775, 1002.4026, 1088.8848]

classr: Marvel projection to the 5-limit of class
[92.1787, 162.8511, 315.6413, 386.3137, 478.4924, 590.2237, 701.955, 772.6274, 905.865, 976.5374, 1088.2687]

coleman10: Coleman 10 (2001)
[98.5, 198.5, 298.5, 397.0, 500.5, 597.5, 699.5, 798.5, 898.0, 999.5, 1096.5]

coleman11: Jim Coleman's XI piano temperament. TL 16 Mar 1999
[97.0, 197.0, 297.0, 394.0, 501.0, 595.0, 699.0, 797.0, 896.0, 999.0, 1093.0]

coleman16: Balanced 16 from Jim Coleman Sr. (2001)
[94.0, 196.0, 296.0, 392.0, 500.0, 592.0, 698.0, 795.0, 894.0, 998.0, 1092.0]

coleman4: Coleman IV from Jim Coleman Sr.
[98.0, 198.0, 298.0, 396.0, 500.0, 598.0, 698.0, 798.0, 898.0, 998.0, 1096.0]

collapsar: An 11-limit patent val superwakalix
[119.4428, 186.3339, 266.8709, 386.3137, 536.9508, 582.5122, 701.955, 803.8217, 884.3587, 968.8259, 1119.463]

colonna1: Colonna's irregular Just Intonation no. 1 (1618)
[70.6724, 182.4037, 287.3591, 386.3137, 498.045, 568.7174, 701.955, 733.7217, 884.3587, 989.3141, 1088.2687]

colonna2: Colonna's irregular Just Intonation no. 2 (1618)
[70.6724, 203.91, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 1017.5963, 1049.3629]

cons15: Set of intervals with num + den <= 15 not exceeding 2/1
[231.1741, 266.8709, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 968.8259, 1017.5963]

corrette: Corrette temperament, modified 1/4-comma meantone
[76.049, 193.1569, 288.7584, 386.3137, 503.4216, 579.4706, 696.5784, 783.381, 889.7353, 996.09, 1082.8921]

corrette2: Michel Corrette, modified meantone temperament (1753)
[72.63, 192.18, 296.09, 384.36, 503.91, 576.54, 696.09, 776.54, 888.27, 1000.0, 1080.45]

corrette3: Corrette's monochord (1753), also Marpurg 4 and Yamaha Pure Minor
[70.6724, 182.4037, 315.6413, 386.3137, 498.045, 568.7174, 701.955, 772.6274, 884.3587, 1017.5963, 1088.2687]

cotoneum12: Cotoneum[12] in 217-tET tuning
[88.4793, 204.6083, 293.0876, 409.2166, 497.6959, 613.8249, 702.3042, 790.7834, 906.9124, 995.3917, 1111.5207]

coul_12: Scale 1 5/4 3/2 2 successively split largest intervals by smallest interval
[70.6724, 182.4037, 315.6413, 386.3137, 456.9861, 568.7174, 701.955, 772.6274, 884.3587, 1017.5963, 1088.2687]

coul_12a: Scale 1 6/5 3/2 2 successively split largest intervals by smallest interval
[70.6724, 182.4037, 315.6413, 386.3137, 498.045, 631.2826, 701.955, 772.6274, 884.3587, 1017.5963, 1088.2687]

coul_12sup: Superparticular approximation to Pythagorean scale, Op de Coul (2003)
[119.4428, 203.91, 297.513, 409.2443, 498.045, 617.4878, 701.955, 821.3978, 905.865, 999.468, 1111.1993]

couperin: Couperin modified meantone
[76.049, 193.1569, 289.736, 386.3137, 503.4216, 579.4706, 696.5784, 772.6274, 889.7353, 996.5788, 1082.8921]

couperin_org: F. Couperin organ temperament (1690), from C. di Veroli, 1985
[76.049, 193.1569, 297.1029, 386.3137, 503.4216, 579.4706, 696.5784, 783.3806, 889.7353, 1006.8431, 1082.8921]

crossbone1: 7-limit Crossbone Scale (1st order, 1st sepent)
[111.7313, 266.8709, 386.3137, 435.0841, 617.4878, 701.955, 764.9159, 884.3587, 933.1291, 968.8259, 1088.2687]

cruciform: Cruciform Lattice
[203.91, 274.5824, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 772.6274, 813.6863, 884.3587, 1088.2687]

cv1: First 12/5 <12 19 28 34| epimorphic
[111.7313, 231.1741, 266.8709, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 968.8259, 1080.5572]

cv11: Eleventh 12/5 scale <12 19 28 34| epimorphic
[119.4428, 203.91, 315.6413, 435.0841, 470.7809, 582.5122, 701.955, 813.6863, 933.1291, 1017.5963, 1088.2687]

cv13: Thirteenth 12/5 scale <12 19 28 34| epimorphic
[111.7313, 196.1985, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 933.1291, 968.8259, 1080.5572]

cv5: Fifth 12/5 scale <12 19 28 34| epimorphic = inverse hen12
[119.4428, 203.91, 315.6413, 386.3137, 470.7809, 582.5122, 701.955, 813.6863, 933.1291, 968.8259, 1088.2687]

cv7: Seventh 12/5 scale <12 19 28 34| epimorphic
[84.4672, 203.91, 315.6413, 435.0841, 470.7809, 582.5122, 701.955, 813.6863, 933.1291, 1017.5963, 1088.2687]

cv9: Ninth 12/5 scale <12 19 28 34| epimorphic
[119.4428, 231.1741, 266.8709, 386.3137, 498.045, 617.4878, 729.2191, 813.6863, 884.3587, 1003.8015, 1115.5328]

cw12_11: CalkinWilf(<12 19 28 34 42|)
[150.6371, 231.1741, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 968.8259, 1049.3629]

dakota-quintannidene: Scott Dakota, Quintannidene, EFG/rhomboidal 1*3*3*3*(14/11)*(14/11). 2058/2057 Nebula microtempered, creating 14:17:21 connections (Mar 2018)
[80.8346, 203.8988, 284.7333, 417.216, 498.0506, 621.1148, 701.9494, 782.784, 915.2667, 986.6827, 1119.1654]

dan_seman: Semantix-Semantic, 5-limit, common tones to Semantic-36 and Semantix-36 with different A
[133.2376, 203.91, 337.1476, 364.8074, 498.045, 568.7174, 701.955, 835.1926, 862.8524, 1039.1026, 1066.7624]

david7: Gary David's Constant Structure (1967). A mode of Fokker's 7-limit scale
[111.7313, 203.91, 315.6413, 435.0841, 498.045, 582.5122, 701.955, 813.6863, 933.1291, 1017.5963, 1080.5572]

de_caus: De Caus (a mode of Ellis's duodene) (1615)
[70.6724, 182.4037, 274.5824, 386.3137, 498.045, 568.7174, 701.955, 772.6274, 884.3587, 996.09, 1088.2687]

dekany-cs: CPS ({1,3,7,9,11}, 2) union {77/72, 77/64}. Grady-Narushima
[53.2729, 116.2338, 203.91, 266.8709, 320.1438, 470.7809, 551.3179, 701.955, 818.1888, 968.8259, 1049.3629]

dekany-cs-marv: dekany-cs in marvel tempering, POTE tuning
[49.379, 116.071, 200.7774, 267.4694, 316.8483, 468.2467, 548.9903, 700.3887, 816.4597, 967.858, 1048.6016]

dent: Tom Dent, well temperament with A=421 Hz and integer Hz beat rates from A
[97.2294, 198.5371, 300.0523, 393.1974, 499.7685, 595.2744, 699.6544, 798.0973, 895.3594, 999.105, 1093.3194]

dent-yn-rwt: Tom Dent's Young-Neidhardt well-temperament (rationalized by George Secor)
[92.058, 196.0675, 295.968, 392.1724, 499.878, 592.1788, 698.0382, 794.013, 894.1122, 997.923, 1092.1767]

dent2: Tom Dent, well-temperament, 2/32 and 5/32 comma, TL 3 & 5-09-2005
[96.2112, 197.1893, 298.1674, 394.3786, 499.3891, 595.6003, 698.5946, 796.822, 895.7839, 998.7783, 1094.9894]

dent3: Tom Dent, Bach harpsichord "sine wave" temperament, TL 10-10-2005
[95.0, 197.0, 299.0, 394.0, 500.0, 594.0, 699.0, 797.0, 895.0, 1000.0, 1094.0]

dent4: Tom Dent, modified meantone with appr. to 7/5, 13/11, 14/11, 19/15, 19/16. TL 30-01-2009
[86.0, 195.0, 296.0, 389.0, 503.0, 584.0, 698.0, 791.0, 892.0, 1001.0, 1087.0]

dent_19otti: Tom Dent's 19otti scale
[92.1787, 194.8696, 297.513, 389.6917, 501.423, 590.2237, 697.4407, 794.846, 892.2866, 999.468, 1088.2687]

dent_berger: Tom Dent's 19berger scale
[90.225, 193.907, 297.513, 387.738, 499.4693, 589.247, 696.9607, 793.6043, 890.7588, 998.4913, 1088.2687]

dent_mean7: Tom Dent's 7-limit irregular meantone
[78.3839, 196.1985, 309.558, 386.3137, 505.7565, 582.5122, 701.955, 778.7107, 892.0702, 1009.8848, 1088.2687]

diamisty: Diamisty scale 2048/2025 and 67108864/66430125
[92.1787, 203.91, 296.0887, 405.8663, 498.045, 609.7763, 701.955, 794.1337, 886.3124, 1015.6426, 1107.8213]

diaphonic_12: 12-tone Diaphonic Cycle, conjunctive form on 3/2 and 4/3
[84.4672, 173.2679, 266.8709, 365.8255, 470.7809, 582.5122, 701.955, 790.7557, 884.3587, 983.3133, 1088.2687]

diaphonic_12a: 2nd 12-tone Diaphonic Cycle, conjunctive form on 10/7 and 7/5
[84.4672, 173.2679, 266.8709, 365.8255, 470.7809, 582.5122, 671.3129, 764.9159, 863.8705, 968.8259, 1080.5572]

divine9: Gert Kramer´s Divine 9 tuning, 5-limit with one 7-limit interval (2011), 1/1=253.125 Hz
[111.7313, 203.91, 315.6413, 415.9273, 519.5513, 609.7763, 701.955, 813.6863, 905.865, 1017.5963, 1110.1708]

dkring1: Double-tie circular mirroring of 4:5:6:7
[84.4672, 266.8709, 315.6413, 351.3381, 386.3137, 582.5122, 701.955, 898.1535, 933.1291, 968.8259, 1017.5963]

dkring2: Double-tie circular mirroring of 3:5:7:9
[84.4672, 266.8709, 400.1085, 435.0841, 519.5513, 582.5122, 701.955, 764.9159, 849.3831, 884.3587, 1017.5963]

dkring3: Double-tie circular mirroring of 6:7:8:9
[203.91, 231.1741, 266.8709, 435.0841, 498.045, 666.2582, 701.955, 729.2191, 933.1291, 996.09, 1137.0391]

dkring4: Double-tie circular mirroring of 7:8:9:10
[182.4037, 203.91, 231.1741, 386.3137, 435.0841, 590.2237, 617.4878, 638.9941, 821.3978, 1003.8015, 1017.5963]

dodeceny: Degenerate eikosany 3)6 from 1.3.5.9.15.45 tonic 1.3.15
[92.1787, 203.91, 274.5824, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 884.3587, 905.865, 1088.2687]

domdimpajinjschis: Dominant-diminished-pajara-injera-schism wakalix
[84.4672, 231.1741, 315.6413, 435.0841, 498.045, 582.5122, 701.955, 813.6863, 933.1291, 1017.5963, 1080.5572]

dorian_schl: Schlesinger's Dorian Piano Tuning (Sub 22)
[80.537, 165.0042, 253.8049, 347.4079, 446.3625, 551.3179, 663.0492, 782.492, 910.7903, 978.6905, 1049.3629]

douwes: Claas Douwes recommendation of 24/23 and 15/14 steps for clavichord (1699)
[73.6807, 193.1235, 312.5663, 386.2469, 505.6897, 579.3704, 698.8132, 772.4938, 887.4337, 1006.8765, 1080.5572]

dowland_12: subset of Dowland's lute tuning, lowest octave
[108.2374, 203.91, 284.447, 387.9539, 498.045, 596.9996, 701.955, 810.1924, 905.865, 986.402, 1095.0446]

dudon_12_of_19-ht: 12 of 19-tones harmonic temperament, from 27 to 35
[66.0496, 191.0383, 315.6413, 378.6022, 505.2435, 568.7174, 695.5311, 764.9159, 884.3587, 1006.8765, 1080.5572]

dudon_19-l_rocky_hwt: 19-limit well-temperament, C to B achieving eq-b of bluesy DEG-type chords (2005)
[90.225, 195.1804, 294.135, 387.738, 498.045, 588.27, 699.5786, 792.18, 885.783, 996.09, 1086.315]

dudon_3-limit_with429: cycle of 10 pure fourths (4/3) from D ending in 429/256
[90.225, 203.91, 294.135, 384.36, 498.045, 588.27, 701.955, 792.18, 893.8006, 996.09, 1086.315]

dudon_afshari: Avaz-e-Afshari -c JI interpretation
[138.5727, 203.91, 342.4827, 347.4079, 498.045, 515.9854, 701.955, 857.0946, 869.8713, 996.09, 999.468]

dudon_aka: Cylf-scale (Baka sequence- pentatonic Slendro plus pure fifths)
[15.5269, 235.8468, 246.701, 479.2271, 488.6616, 498.045, 717.4819, 729.8039, 948.656, 977.2721, 1190.6166]

dudon_aksand: Fractal Aksaka - c sequence (x^2 - x = 1/4), 16:20:24:29:35, plus 163
[1200.0, 327.6222, 1527.6222, 498.045, 1698.045, 653.1846, 1853.1846, 884.3587, 2084.3587, 916.5188, 2116.5188]

dudon_aluna: Chromatic scale based on F25, with turkish 31/25 segahs and many different thirds
[117.133, 196.1985, 308.4127, 372.4081, 500.2077, 607.0691, 701.955, 813.6863, 887.8177, 998.2527, 1074.3631]

dudon_amlak: Amlak recurrent sequence (x^2 = x + 1/3), as a matrix for Ethiopian scales
[0.0, 292.7107, 297.513, 311.8406, 592.2474, 608.352, 698.1543, 701.955, 790.7557, 1103.3888, 1106.397]

dudon_appalachian: Synchronous beating quasi-1/4 syntonic comma meantone temperament
[76.0573, 193.1568, 310.2396, 386.3137, 503.4299, 579.4705, 696.5533, 772.6274, 889.7436, 1006.843, 1082.867]

dudon_are-are_tapping: 'Are'are tapping bamboo tubes as collected by Hugo Zemp in 1977, JI interpretation
[1200.0, 255.5925, 1455.5925, 478.2593, 1678.2593, 675.5234, 1875.5234, 840.5277, 2040.5277, 1034.9958, 2234.9958]

dudon_are-are_women1: 'Are'are women songs as collected by Hugo Zemp in 1977, JI interpretation (2009)
[189.0495, 187.8054, 364.5369, 371.8263, 498.045, 511.5177, 695.9333, 701.955, 884.3587, 1064.0553, 1068.9251]

dudon_are-are_women2: 'Are'are women songs as collected by Hugo Zemp in 1977, JI interpretation (Dudon 2009)
[182.4037, 193.1903, 366.9701, 376.6689, 498.045, 502.5476, 701.955, 869.8713, 884.3587, 1068.9251, 1075.397]

dudon_armadillo: Triple equal-beating sequence from C to B, optimal major chords on white keys
[90.3162, 194.5772, 294.2262, 389.1038, 498.1336, 588.3612, 697.2949, 792.2712, 891.8468, 996.1735, 1086.4062]

dudon_atlantis: Triple equal-beating of minor triads + septimal sevenths meantone sequence
[70.2313, 191.6143, 311.9617, 384.5209, 503.5497, 572.7376, 694.588, 765.9986, 886.1497, 1007.7667, 1075.3096]

dudon_aulos: Double clarinet -c version of Ptolemy's Diatonon Homalon
[150.6371, 155.1396, 315.6413, 322.1866, 498.045, 0.0, 701.955, 0.0, 852.5921, 1017.5963, 1018.6889]

dudon_baka: Baka typical semifourth pentatonic, can also be accepted as a circular Slendro
[231.1741, 241.5719, 483.0818, 483.0818, 487.5843, 718.7584, 718.7584, 953.8627, 953.8627, 1185.0368, 1197.0177]

dudon_bala_ribbon: Parizekmic scale based on a double Bala sequence
[70.6724, 203.91, 315.6413, 454.2139, 498.045, 561.7786, 701.955, 813.6863, 952.2589, 1017.5963, 1156.1689]

dudon_balafon_semifo: Burkinabe typical semifourth pentatonic balafon feast scale
[451.6511, 212.2533, 710.2983, 445.8706, 454.2139, 949.6961, 710.2983, 1200.0, 943.9156, 952.2589, 1412.2533]

dudon_balasept-above: 5.7.13.15 tuning based on a single Balasept sequence
[128.5558, 248.2219, 377.6358, 454.2139, 498.045, 625.7635, 701.955, 873.5045, 952.2589, 1080.5572, 1156.1689]

dudon_balasept-under: 5.7.13.15.21 tuning based on a single Balasept sequence
[84.4672, 248.2219, 333.5817, 454.2139, 498.045, 582.5122, 701.955, 831.6267, 952.2589, 1080.5572, 1156.1689]

dudon_bambara: Typical pentatonic balafon ceremonial tuning from Mali or Burkina Faso
[0.0, 222.995, 222.995, 488.499, 488.499, 488.499, 711.4487, 711.4487, 934.4885, 934.4885, 1200.0]

dudon_bayati_in_d: Bayati (or Husayni) maqam in D
[6.7759, 210.6859, 349.2585, 365.8255, 508.1989, 523.3189, 708.7309, 712.1089, 912.6409, 1051.2135, 1054.9088]

dudon_baziguzuk: 8 9 11 12 13 defective Mohajira (Dudon 1985)
[0.0, 138.5727, 498.045, 138.5727, 498.045, 1049.3629, 701.955, 1049.3629, 498.045, 1049.3629, 701.955]

dudon_bhairav: Bhairav thaat raga, based on 17th harmonic
[104.9554, 111.7313, 386.3137, 392.0749, 498.045, 0.0, 701.955, 806.9104, 812.5588, 1078.6239, 1088.2687]

dudon_bhairavi: Bhairavi thaat raga, by Dudon (2004)
[104.9554, 192.5576, 297.513, 304.2889, 498.045, 603.0004, 701.955, 795.558, 802.3339, 999.468, 1006.2439]

dudon_bhatiyar: Early morning North indian raga, a modelisation based on Amlak 57
[88.8007, 98.5788, 386.3137, 404.442, 498.045, 586.8457, 701.955, 894.5126, 902.487, 1090.2924, 1106.397]

dudon_bhavapriya: Bhavapriya (South indian, prati madhyama mela # 44) or Bhavani (North indian)
[104.9554, 111.3086, 297.513, 314.5138, 590.2237, 595.026, 701.955, 806.9104, 815.3761, 996.09, 999.468]

dudon_brazil: Triple equal-beating 1/5 syntonic comma meantone, limited to 8 tones
[4.2799, 195.3183, 386.3137, 390.6204, 502.3249, 585.9399, 697.6645, 782.0294, 892.9613, 1083.9782, 1088.2821]

dudon_burma: Burmese typical diatonic scale, compatible with modes Pule, Thanyu, Autpyin
[80.1303, 190.4373, 314.1495, 382.4324, 504.7422, 563.8793, 695.4812, 751.4432, 885.2532, 1009.4587, 1074.796]

dudon_buzurg: Decaphonic system inspired by medieval Persian mode Buzurg (Safi al-Din), Dudon 1997
[128.2982, 138.5727, 231.1741, 369.7468, 466.8507, 573.6568, 701.955, 830.2532, 840.5277, 933.1291, 1071.7018]

dudon_byzantine: Byzantine scale, JI interpretation and -c extrapolation of turkish Hijaz in C
[130.2293, 138.5727, 379.0852, 386.3137, 491.2691, 498.045, 701.955, 829.3943, 840.5277, 989.3141, 996.09]

dudon_chandrakaus: Chandrakaus from Bb on black keys plus other version from D on white keys
[0.0, 93.603, 182.4037, 405.4436, 405.4436, 479.9167, 585.9438, 780.3048, 795.558, 884.3587, 884.3587]

dudon_chiffonie: Hurdy-Gurdy variation on fractal Gazelle (Rebab tuning)
[0.0, 193.1903, 347.4079, 386.3137, 511.5177, 524.8864, 701.955, 703.9576, 884.3587, 1036.1976, 1029.5772]

dudon_chromatic_subh: Chromatic subharmonic scale using smallest possible numbers
[111.7313, 216.6867, 315.6413, 409.2443, 498.045, 623.249, 701.955, 813.6863, 918.6417, 1017.5963, 1111.1993]

dudon_coherent_shrutis: 12 of the 22 shrutis (cycle of fifths from A to D), differentially coherent with C or 2C
[93.603, 203.91, 297.513, 386.3137, 498.045, 590.2237, 701.955, 795.558, 884.3587, 996.09, 1088.2687]

dudon_cometslendro1: Five septimal tone comets (quasi auto-coherent intervals) in one octave
[6.194, 237.3681, 238.7201, 248.1547, 480.5045, 488.7122, 720.471, 724.559, 955.4779, 957.2636, 967.9392]

dudon_cometslendro2: Five septimal tone comets (quasi auto-coherent intervals) in one octave
[232.3159, 240.2871, 472.6119, 479.9167, 480.6455, 712.1839, 719.9747, 952.2589, 960.0099, 1192.2885, 1192.2885]

dudon_comptine: 1/4 pyth. comma meantone sequence between C and E, completed by 8 pure fifths
[90.225, 192.2706, 294.135, 384.36, 498.045, 588.27, 696.0519, 792.18, 888.3122, 996.09, 1086.315]

dudon_comptine_h3: 1/4 pyth. comma meantone sequence between G and B, completed by 8 pure fifths
[90.2346, 198.0711, 294.1446, 390.2439, 498.045, 588.2991, 701.955, 792.1896, 894.1674, 996.0996, 1086.3441]

dudon_country_blues: Differentially-coherent 12 tones country blues scale
[87.8988, 203.91, 327.6222, 386.3137, 498.045, 577.352, 701.955, 795.558, 884.3587, 1009.5627, 1088.2687]

dudon_countrysongs: CDEG chords and all transpositions equal-beating meantone sequence
[81.5271, 196.0586, 307.7899, 389.8353, 502.9341, 586.7386, 698.0337, 779.9754, 892.7595, 1005.3675, 1089.0519]

dudon_crying_commas: Pentatonic differentiallly-coherent scale with crying commas
[203.91, 211.9065, 223.8324, 235.6767, 498.045, 701.955, 701.955, 884.3587, 900.5134, 916.5188, 937.6317]

dudon_darbari: Darbari Kanada (midnight raga)
[0.0, 203.91, 297.513, 312.6331, 498.045, 203.91, 701.955, 795.558, 810.6781, 999.468, 1014.5881]

dudon_diatess: Sequence of 11 Diatess fifths from Eb (75)
[60.1387, 188.6312, 317.3734, 377.2788, 505.8258, 565.5953, 694.4291, 754.2299, 882.7983, 1011.6169, 1071.4351]

dudon_didymus: Greek-genre scale rich in commas
[84.4672, 203.91, 315.6413, 378.6022, 582.5122, 590.2237, 701.955, 813.6863, 884.3587, 1017.5963, 1080.5572]

dudon_egyptian_rast: Egyptian style Rast -c modelisation
[187.8054, 203.91, 347.4079, 357.2167, 498.045, 0.0, 701.955, 884.3587, 898.7259, 1049.3629, 1062.4289]

dudon_evan_thai: Evan differentially-coherent double Thai heptaphone
[3.3167, 172.1433, 176.0907, 344.9023, 513.7124, 517.364, 686.1445, 689.7805, 858.5929, 862.4076, 1031.2045]

dudon_flamenca: Flamenco chromatic scale around the 17th harmonic, in A (= guitar), Dudon 2005
[77.4483, 189.1796, 294.135, 393.0896, 498.045, 585.6472, 690.6026, 779.4033, 891.1346, 996.09, 1086.315]

dudon_fong: Differentially-coherent Thai scale, with double seventh note
[168.5775, 168.5775, 338.4424, 338.4424, 507.8537, 675.5234, 677.1873, 846.5704, 852.5921, 1015.9561, 1032.2886]

dudon_gayakapriya: South indian raga with Ethiopian flavors, interpreted through a 19-limit Amlak sequence
[0.0, 203.91, 297.513, 312.6331, 386.3137, 701.955, 701.955, 795.558, 806.9104, 1088.2687, 1093.071]

dudon_gnawa-pelog: Differentially-coherent model of a Gnawa scale, with Pelog variations
[12.322, 187.343, 198.4053, 537.775, 546.8154, 546.8154, 685.388, 685.388, 701.955, 1044.8604, 1044.8604]

dudon_golden_h7eb: 12 of 19/31/50 etc... Golden meantone harmonic 7-c and eq-b version
[73.3786, 192.9327, 312.1823, 384.758, 504.5121, 577.4487, 696.7639, 769.4627, 888.8882, 1008.3569, 1081.3438]

dudon_gulu-nem: 5 tones Pelog from a sequence of very low "Gulu-nem" fifths (about 5/9 of an octave)
[0.0, 141.0601, 141.0601, 282.1166, 282.1166, 282.1166, 671.1203, 671.1203, 812.0844, 812.0844, 812.0844]

dudon_harm_minor: So-called "harmonic" minor scale, also raga Kiravani, one of Dudon's versions
[191.8456, 203.91, 297.513, 315.6413, 498.045, 507.4869, 701.955, 813.6863, 999.468, 1017.5963, 1094.0299]

dudon_harry: Hommage to Harry Partch, 20th century just intonation pioneer (1901-1974)
[182.4037, 203.91, 231.1741, 266.8709, 470.7809, 498.045, 680.4487, 701.955, 729.2191, 764.9159, 968.8259]

dudon_hawaiian: Equal-beating lapsteel-style Major 6th chords (C:E:G:A:C:E) meantone sequence
[71.8544, 191.9543, 312.0651, 383.9159, 504.0203, 575.8673, 695.9792, 767.8226, 887.9343, 1008.0434, 1079.888]

dudon_hiroyoshi: Japanese koto most famous mode, also Ethiopian minor scale, etc.
[-607.7526, -498.045, 386.3137, 392.3776, 590.2237, 596.2876, 701.955, 0.0, 386.3137, 1088.2687, 1094.3326]

dudon_homayun: Homayun in G
[0.0, 203.91, 203.91, 342.4827, 491.2691, 491.2691, 701.955, 701.955, 840.5277, 840.5277, 1073.7813]

dudon_hoomi: Hoomi singing scale in F/F# (on black keys), or in C or G, CFGAC^equal-beating sequence
[0.0, 194.341, 194.341, 390.828, 502.5593, 502.5593, 697.4289, 697.4289, 892.9258, 892.9258, 1087.9673]

dudon_ifbis: Ifbis -c recurrent sequence: x^5 - x^3 = 1 (not traditional)
[148.0589, 231.1741, 336.1295, 435.0841, 505.7565, 617.4878, 701.955, 782.492, 878.1647, 968.8259, 1071.7018]

dudon_isrep: Fractal Isrep -c recurrent sequence, x^2 = 8x - 8 from F=64
[1200.0, 274.5824, 1474.5824, 0.0, 551.3179, 1751.3179, 701.955, 1901.955, 840.5277, 2040.5277, 274.5824]

dudon_jamlak: Cycle of fifths developped around a 19-limit Amlak sequence
[5.4017, 203.91, 302.0629, 403.5401, 503.4467, 613.1543, 701.955, 800.1079, 902.656, 1002.5026, 1111.1993]

dudon_jazz: Jazz in 7 tones
[0.0, 280.3436, 297.513, 498.045, 501.423, 595.026, 699.6993, 701.955, 884.3587, 995.6673, 999.468]

dudon_jobim: Triple equal-beating 1/5 syntonic comma meantone, full 12 tones scale
[83.5903, 195.3183, 307.0509, 390.6204, 502.3249, 585.9399, 697.6645, 782.0294, 892.9613, 999.7217, 1088.2821]

dudon_jog: Jog with (ascent only) additional 15/8
[0.0, 297.513, 315.6413, 386.3137, 498.045, 511.5177, 701.955, 701.955, 996.09, 1009.5627, 1088.2687]

dudon_joged-bumbung: Typical Balinese grantang and tingklik (bamboo xylophones) slendro tuning
[0.0, 222.995, 231.1741, 488.499, 488.499, 498.045, 701.955, 711.4487, 933.1291, 934.4885, 1200.0]

dudon_kalyana: Kalyana thaat raga, harmonics 3-5-17-19-43 version by Dudon 2004
[192.5576, 202.6523, 386.3137, 393.0896, 590.2237, 596.9996, 701.955, 891.1346, 894.5126, 1088.2687, 1095.0446]

dudon_kanakangi: Raga Kanakangi (Karnatic music, suddha madhyama mela # 1)
[104.9554, 203.91, 203.91, 498.045, 498.045, 701.955, 701.955, 795.558, 884.3587, 884.3587, 1200.0]

dudon_kellner_eb: JI version of Anton Kellner 1/5 Pyth.c well-temperament, based on Skisni algorithm
[90.225, 195.1804, 294.135, 389.0031, 498.045, 588.27, 697.4634, 792.18, 893.3595, 996.09, 1090.9581]

dudon_kirvanti: Raga Kirvanti (known also as Hungarian Gypsy scale)
[0.0, 203.91, 297.513, 315.6413, 609.7763, 613.1543, 701.955, 806.9104, 813.6863, 1088.2687, 1105.4951]

dudon_kora-chimere: Kora diatonic, slightly neutral
[879.8207, 184.6682, 1200.0, 368.09, 507.0854, 1568.09, 692.8671, 1707.0854, 879.8207, 1066.989, 1892.8671]

dudon_kora_snd: Kora tuning in the Mandinka semi-neutral diatonic style
[372.945, 189.0495, 514.612, 372.945, 514.612, 870.99, 701.955, 1061.4273, 876.0154, 1200.0, 1061.4273]

dudon_kumoyoshi_19-l: Japanese famous mode, -c 17+19th harmonics interpretation
[701.955, 93.603, 104.9554, 0.0, 498.045, 1304.9554, 701.955, 1200.0, 795.558, 806.9104, 0.0]

dudon_lakota: Comma variations add to the richness of differential tones
[0.0, 297.513, 315.6413, 327.6222, 498.045, 503.4467, 701.955, 0.0, 884.3587, 999.468, 1017.5963]

dudon_liane: Class 1 differentially coherent interleaved intervals, hexatonic scale
[0.276, 199.9798, 203.91, 364.9841, 366.7716, 617.4878, 620.5765, 782.492, 782.492, 1033.2283, 1038.0845]

dudon_lucie: Sequence of 11 fractal Lucie fifths (exactly 695,5023126 c.) from Eb
[63.2648, 191.1351, 313.4786, 382.4189, 504.5169, 575.3185, 695.4588, 775.737, 886.3028, 1009.0097, 1076.558]

dudon_madhuvanti: Madhuvanti (also called Ambika), late evening raga
[0.0, 203.91, 297.513, 315.6413, 590.2237, 609.3536, 701.955, 893.8006, 905.865, 1088.2687, 1099.0553]

dudon_mahur: Persian Dastgah Mahur
[191.8456, 203.91, 386.3137, 395.7556, 498.045, 501.423, 701.955, 884.3587, 893.8006, 999.468, 1088.2687]

dudon_mandinka: Guinean Balafon circular tuning, neutral diatonic -c interpretation
[0.0, 178.7656, 178.7656, 356.9927, 511.2103, 511.2103, 688.6888, 688.6888, 867.76, 867.76, 1048.1611]

dudon_marovany: Typical Malagasy scale, neutral diatonic, multiways -c and eq-b
[184.1243, 189.0919, 1200.0, 368.5167, 507.8537, 1568.5167, 692.0904, 697.0297, 876.4715, 1060.6715, 1060.8381]

dudon_marva: Raga Marva, differential-coherent version, modelized by Jacques Dudon
[88.8007, 104.9554, 386.3137, 404.442, 0.0, 590.2237, 608.352, 884.3587, 902.487, 1088.2687, 1106.397]

dudon_meancaline: 12 of 19-tones quasi-equal HT with coherent semifourths on black keys
[60.7948, 189.511, 315.2203, 378.8728, 505.2278, 565.6538, 694.7846, 755.5825, 884.2072, 1010.4259, 1072.4204]

dudon_melkis: Sequence of 11 Melkis fourths (499.11472 c.) from D
[95.5754, 201.7219, 297.3459, 392.9194, 499.116, 594.6901, 700.8966, 796.4599, 892.0343, 998.2313, 1093.8042]

dudon_melkis_3f: Sequence of 6 Melkis fourths from G, then 3 pure fourths between C# and E
[95.5633, 198.2542, 297.3347, 389.6983, 499.1034, 593.6083, 700.8253, 796.4493, 893.145, 998.2194, 1091.6533]

dudon_meso-iph12: Partial Meso-Iph fifth transposition of two Iph fractal series (2010)
[134.5964, 171.0448, 233.0393, 366.9212, 498.667, 600.1072, 699.2572, 872.9998, 966.6028, 1000.4391, 1066.19]

dudon_michemine: Triple equal-beating of all minor triads meantone sequence
[64.3428, 191.6143, 311.9617, 384.5209, 503.5497, 578.5911, 694.588, 775.3596, 886.1497, 1007.7667, 1075.3096]

dudon_mougi: Tsigan-style raga, based on the 19/16 minor third -c properties
[203.91, 208.7123, 297.513, 312.6331, 595.026, 613.1543, 701.955, 999.468, 1014.5881, 1093.071, 1111.1993]

dudon_mounos: Mounos extended fifths -c sequence, quasi-septimal minor diatonic scale
[203.91, 222.9347, 265.504, 498.045, 488.4537, 701.955, 711.4935, 905.865, 934.4985, 977.005, 996.09]

dudon_nan-kouan: Nan-Kouan (medieval chinese ballade) scale interpretation
[192.5576, 202.6523, 386.3137, 391.7154, 393.0896, 551.3179, 701.955, 889.7604, 891.1346, 894.5126, 1049.3629]

dudon_napolitan: Napolitan scale, class-1 differential coherence ; whole tone scale by omitting C
[104.9554, 113.4211, 293.7123, 297.513, 498.045, 501.423, 701.955, 701.955, 884.3587, 1088.2687, 1095.4672]

dudon_natte: Sequence of 7 consecutive tones of a Natte series from 28 to 151
[712.0497, 227.3734, 938.1838, 451.876, 486.6177, 1200.0, 712.0497, 227.3734, 938.1838, 451.876, 1169.3579]

dudon_nung-phan1: 7 tones from a sequence of Nung-Phan very low fifths (in theory 679.5604542 c.)
[1200.0, 158.9404, 1358.9404, 318.4135, 483.4177, 1683.4177, 679.6162, 1879.6162, 840.5277, 2040.5277, 997.1301]

dudon_nung-phan2: 7 tones from a Nung-Phan sequence (very low fifths, in theory 679.5604542 c.)
[701.955, 206.4729, 884.3587, 363.0753, 519.5513, 1200.0, 701.955, 1406.4729, 884.3587, 1563.0753, 1049.3629]

dudon_okna_hwt: Harmonic well-temperament for mongolian lute
[92.1787, 199.3957, 297.513, 391.7154, 501.423, 590.2237, 701.955, 794.1337, 893.8006, 998.756, 1088.2687]

dudon_over-under_ht: Cycle of fifths, one half above 3/2, the other below (meantone)
[53.2729, 195.8764, 274.5824, 379.0852, 498.045, 538.1526, 695.9333, 761.0472, 884.3587, 989.3141, 1078.6239]

dudon_pelog_35: JI -c Pelog with 5, 13, 35 and complements
[-536.4999, 165.4551, -381.3603, 663.5001, 0.0, 4.9535, 304.0278, 169.9577, 663.5001, 304.0278, 818.6397]

dudon_pelog_59: JI -c Pelog with 5, 11, 59 and complements
[391.7154, 551.3179, 386.3137, 399.7864, 551.3179, 701.955, 706.4576, 1073.7813, 1193.2241, 1059.1717, 1073.7813]

dudon_pelog_ambi: Differential-coherent 5 notes Pelog, ambiguous tonic between C & E
[698.9468, 511.5177, 357.2167, 371.8263, 498.045, 511.5177, 698.9468, 346.1779, 0.0, 1049.3629, 1059.1717]

dudon_piphat: Gazelle-Naggar -c series + comma 953-960, major mode
[0.0, 167.7313, 180.4011, 332.24, 338.8352, 686.8788, 689.2327, 689.2327, 843.4504, 843.4504, 843.4504]

dudon_piphat_min: Gazelle-Naggar -c series + comma 953-960, minor mode
[0.0, 154.2177, 154.2177, 154.2177, 510.7673, 510.7673, 678.4986, 691.1685, 843.0073, 849.6025, 856.1727]

dudon_purvi: Purvi Thaat Raga
[87.8988, 93.603, 386.3137, 400.6809, 590.2237, 603.0004, 701.955, 789.8538, 795.558, 1088.2687, 1107.3986]

dudon_quechua: Gazelle-Naggar -c series + comma 953-960, F.11 mode
[0.0, 0.0, 356.5496, 356.5496, 524.2809, 536.9508, 688.7897, 695.3848, 701.955, 1045.7823, 1045.7823]

dudon_raph: Raph recurrent sequence, series Phi17 & Phi93
[56.7669, 102.6909, 151.8389, 409.2443, 468.9479, 519.5513, 568.7174, 837.5658, 884.3587, 935.5319, 985.2358]

dudon_rast-mohajira: Rast + Mohajira -c quartertones set
[187.8054, 203.91, 347.4079, 357.2167, 498.045, 551.3179, 701.955, 884.3587, 905.865, 1049.3629, 1059.1717]

dudon_rast_matrix: Wusta-Zalzal Arijaom sequence with Rast on white keys and other maqamat
[147.8781, 197.773, 348.4101, 361.8828, 499.4228, 552.3201, 705.6268, 859.9278, 899.728, 1015.4508, 1050.3651]

dudon_rebab: Gazelle, x^5 = 8x^4 - 32, -c series + comma 953-960, Dudon (2009)
[0.0, 164.5087, 171.1039, 519.1475, 521.5014, 521.5014, 675.7191, 689.1918, 690.4114, 1032.2687, 1032.2687]

dudon_s-n-buzurg: Decaphonic system inspired by medieval Persian mode Buzurg (Safi al-Din)
[128.2982, 138.5727, 231.1741, 369.7468, 466.8507, 573.6568, 701.955, 830.2532, 840.5277, 933.1291, 1071.7018]

dudon_saba-c: Differentially coherent version of Maqam Saba
[131.9012, 145.2185, 297.513, 315.6413, 409.2443, 692.3102, 701.955, 813.6863, 827.159, 993.3828, 1017.5963]

dudon_sapaan: 7 tones from a sequence of Sapaan very low fifths (in theory 680.015678 c.)
[0.0, 201.3433, 201.3433, 359.9532, 520.9756, 520.9756, 680.0158, 680.0158, 879.7359, 879.7359, 1038.8387]

dudon_saqqara: Scale of a ney flute (n¡ 69815) from ancient Egypt found in Saqqara
[8.1855, 204.8214, 354.8509, 361.5223, 523.4973, 710.1405, 720.9947, 836.104, 846.1987, 1027.5956, 1036.636]

dudon_satara: Rajasthani double flute drone-c tuning amusement
[-498.045, 203.91, -498.045, 386.3137, 511.5177, -498.045, 701.955, -498.045, 905.865, -498.045, 1088.2687]

dudon_saung_gauk: Typical diatonic heptaphone played on the saung gauk (burmese harp)
[0.0, 183.9041, 183.9041, 367.8097, 508.0233, 508.0233, 691.9188, 691.9188, 875.8131, 875.8131, 1059.706]

dudon_segah: Dastgah Segah, JI interpretation
[185.7817, 203.91, 352.4774, 353.5449, 498.045, 506.4777, 701.955, 840.5277, 851.5899, 1023.7903, 1029.5772]

dudon_segah_subh: Inversed Dudon Neutral Diatonic (mediants of major and minor)
[0.0, 194.1013, 347.4079, 347.4079, 498.045, 498.045, 701.955, 701.955, 845.4529, 1049.3629, 1049.3629]

dudon_septimal_2: Slendro formed by five 8/7 separated by two commas, Dudon (2009)
[216.2496, 229.3155, 460.4896, 460.4896, 483.1205, 714.2946, 714.2946, 935.6041, 944.2387, 1177.5647, 1192.5538]

dudon_septimal_3: Five 8/7 or close approximations separated by three commas, Dudon (2009)
[232.9715, 245.5016, 464.1456, 464.1456, 478.7553, 709.9294, 725.7688, 947.4566, 955.7599, 1175.8541, 1185.5529]

dudon_shaku: Japanese Shakuhachi scale, -c interpretation
[0.0, 92.891, 93.603, 104.9554, 491.2691, 498.045, 701.2034, 701.955, 982.5116, 984.2148, 996.09]

dudon_shri_rag: Sunset indian raga (Purvi Thaat), as modeled from a 19-limit Amlak sequence
[88.8007, 99.5872, 395.4016, 404.442, 592.2474, 608.352, 701.955, 790.7557, 795.558, 1103.3888, 1106.397]

dudon_shur: Shur Dastgah -c version, modelisation by Dudon (1990)
[138.5727, 153.3067, 294.135, 320.9764, 498.045, 0.0, 701.955, 840.5277, 845.4529, 996.09, 1014.0304]

dudon_siam_97: Black keys = 5 quasi-edo ; White keys = 7 quasi-edo (Dudon 1997)
[35.6968, 171.5495, 277.1453, 342.4827, 514.3114, 515.9854, 685.8504, 757.1699, 857.0946, 996.09, 1029.5772]

dudon_simdek: Heptatonic scale from a sequence of Simdek very low fifths (in theory 676,48557456 c.)
[370.0684, 217.1786, 522.9553, 370.0684, 522.9553, 892.702, 676.6811, 1045.5572, 892.702, 1200.0, 1045.5572]

dudon_sireine_f: Sequence of 11 Sireine fifths (exactly 691.2348426 c.) from F
[33.1164, 182.2693, 201.8926, 364.1285, 508.7647, 544.4616, 691.1685, 719.5628, 873.3016, 876.4945, 1054.6093]

dudon_skisni: Triple equal-beating sequence of 11 quasi-1/5 Pythagorean comma meantone fifths
[80.9635, 194.5593, 308.1532, 389.1264, 502.7303, 583.6661, 697.2569, 778.2691, 891.8492, 1005.448, 1086.3562]

dudon_skisni_hwt: Triple equal-beating sequence from C to B, optimal major chords on white keys
[90.225, 194.8696, 294.135, 389.0167, 498.045, 588.27, 697.4407, 792.18, 891.7817, 996.09, 1086.4644]

dudon_slendra: Cylf-scale (Baka pentatonic Slendro plus pure fifths)
[15.5269, 235.8468, 257.4875, 479.2271, 488.6616, 498.045, 717.4819, 729.8039, 959.4425, 977.2721, 1190.6166]

dudon_slendro_m-mean: Wilson meantone from Bb to F# extended in a Slendro M on black keys
[74.3246, 188.3078, 309.3573, 382.0072, 500.7312, 571.7257, 694.7714, 775.6357, 885.4337, 1006.8097, 1076.0389]

dudon_slendro_matrix: Ten tones for many 7-limit slendros from Lou Harrison, of the five types N, M, A, S, J
[0.0, 231.1741, 231.1741, 462.3482, 470.7809, 498.045, 701.955, 729.2191, 933.1291, 960.3932, 968.8259]

dudon_smallest_numbers: Chromatic scale achieved with smallest possible numbers
[104.9554, 203.91, 297.513, 386.3137, 511.5177, 590.2237, 701.955, 806.9104, 905.865, 999.468, 1088.2687]

dudon_soria: 12 from a 17-notes cycle, equal-beating extended fifths (705.5685 c.) sequence
[134.6779, 206.5017, 258.7934, 417.9247, 499.8069, 629.1199, 698.71, 840.2284, 912.911, 950.6684, 1123.4414]

dudon_soria12: 12 from a 17-notes cycle, equal-beating extended fifths (705.5685 c.) sequence
[137.0689, 209.0046, 282.6401, 420.3668, 494.5762, 631.4997, 702.9317, 842.6307, 914.9597, 974.2606, 1125.8945]

dudon_sumer: Neutral diatonic soft Rast scale with Ishku -c variations
[160.6269, 182.4037, 347.4079, 366.9701, 498.045, 533.7418, 701.955, 869.8713, 884.3587, 1036.1976, 1049.3629]

dudon_synch12: Synchronous-beating alternative to 12-tET, cycle of fourths beats from C:F = 1 2 1 1 2 4 3 6 8 8 8 32
[100.3202, 199.5327, 301.6498, 400.0304, 500.5024, 600.6844, 698.673, 800.7274, 900.0261, 1002.227, 1100.0325]

dudon_tango: Fractal Melkis lowest numbers HWT fifths sequence, from D
[96.4481, 203.91, 297.513, 393.5122, 498.045, 595.026, 701.955, 795.558, 892.4549, 999.468, 1093.071]

dudon_tibet: Differentially coherent minor pentatonic
[0.0, 352.4774, 353.5449, 498.045, 505.0117, 515.4096, 701.955, 701.955, 701.955, 1023.7903, 1029.5772]

dudon_tielenka: Tielenka (Romanian harmonic flute) scale JI imitation, Dudon (2009)
[0.0, 215.9744, 275.0666, 386.3137, 1200.0, 563.3823, 701.955, 852.5921, 968.8259, 980.8903, 1100.3331]

dudon_timbila: Bala tuning whole tone intervals -c heptaphone
[0.0, 169.865, 169.865, 339.2762, 506.946, 508.6098, 677.9929, 684.0146, 863.7111, 863.7111, 1031.4225]

dudon_tit_fleur: Differentially coherent semi-neutral diatonic, small numbers
[169.035, 189.0495, 359.4723, 372.945, 498.045, 687.0945, 701.955, 857.5173, 870.99, 1049.3629, 1061.4273]

dudon_todi: Morning Thaat raga (with G = Todi ; without G = Gujari Todi)
[88.8007, 99.5872, 292.7107, 297.513, 600.3184, 608.352, 701.955, 790.7557, 804.2284, 1101.1292, 1106.397]

dudon_valiha: Typical Malagasy scale, neutral diatonic, equal-beating on minor triads
[0.0, 182.2693, 182.2693, 364.1285, 508.7647, 508.7647, 691.1685, 691.1685, 873.3016, 876.4945, 1054.6093]

dudon_werckmeister3_eb: Harmonic equal-beating version of the famous well-temperament (2006)
[90.225, 192.2706, 294.135, 390.2672, 498.045, 588.27, 696.0519, 792.18, 888.3122, 996.09, 1092.2222]

dudon_zurna: Quartertone scale with tonic transposition on a turkish segah of 159/128
[701.955, 136.0582, -375.4595, 326.4955, 379.7684, 481.6351, 698.3218, 824.5405, 838.0132, 967.2697, 979.6801]

duncan: Dudley Duncan's Superparticular Scale
[104.9554, 203.91, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 968.8259, 1088.2687]

duoden12: Almost equal 12-tone subset of Duodenarium
[92.1787, 203.91, 296.0887, 405.8663, 498.045, 609.7763, 701.955, 794.1337, 903.9113, 998.0437, 1107.8213]

duodene: Ellis's Duodene : genus [33355]
[111.7313, 203.91, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 813.6863, 884.3587, 1017.5963, 1088.2687]

duodene14-18-21: 14-18-21 Duodene
[62.9609, 203.91, 266.8709, 435.0841, 498.045, 638.9941, 701.955, 764.9159, 933.1291, 968.8259, 1137.0391]

duodene3-11_9: 3-11/9 Duodene
[150.6371, 203.91, 347.4079, 354.5471, 498.045, 551.3179, 701.955, 845.4529, 852.5921, 1049.3629, 1056.5021]

duodene6-7-9: 6-7-9 Duodene
[203.91, 231.1741, 266.8709, 435.0841, 470.7809, 498.045, 701.955, 764.9159, 933.1291, 968.8259, 1137.0391]

duodene_min: Minor Duodene
[182.4037, 203.91, 315.6413, 386.3137, 498.045, 519.5513, 701.955, 813.6863, 884.3587, 1017.5963, 1088.2687]

duodene_r-45: Ellis's Duodene rotated -45 degrees
[111.7313, 203.91, 315.6413, 427.3726, 519.5513, 631.2826, 743.0139, 772.6274, 884.3587, 996.09, 1088.2687]

duodene_r45: Ellis's Duodene rotated 45 degrees
[92.1787, 111.7313, 203.91, 315.6413, 427.3726, 660.8961, 772.6274, 884.3587, 976.5374, 996.09, 1088.2687]

duodene_skew: Rotated 6/5x3/2 duodene
[133.2376, 182.4037, 315.6413, 386.3137, 498.045, 631.2826, 701.955, 813.6863, 884.3587, 1017.5963, 1129.3276]

duodene_t: Duodene with equal tempered fifths
[113.6863, 200.0, 313.6863, 386.3137, 500.0, 586.3137, 700.0, 813.6863, 886.3137, 1013.6863, 1086.3137]

duodene_w: Ellis duodene well-tuned to fifth=(7168/11)^(1/16) third=(11/7)^(1/2), G.W. Smith
[107.6597, 202.1885, 309.8482, 391.246, 498.9058, 593.4345, 701.0942, 808.754, 890.1518, 1010.9425, 1092.3403]

duohex: Scale with two hexanies, inverse mode of hahn_7.scl
[119.4428, 203.91, 315.6413, 386.3137, 435.0841, 617.4878, 701.955, 821.3978, 933.1291, 1017.5963, 1088.2687]

duohexmarvwoo: Marvel woo version of duohex, a scale with two hexanies
[119.4428, 203.91, 315.6413, 386.3137, 435.0841, 617.4878, 701.955, 821.3978, 933.1291, 1017.5963, 1088.2687]

dwarf12_11: Dwarf(<12 19 28 34 42|) two otonal hexads
[111.7313, 165.0042, 315.6413, 386.3137, 498.045, 582.5122, 663.0492, 813.6863, 884.3587, 1017.5963, 1080.5572]

dwarf12_7: Dwarf(<12 19 28 34|) five major triads, four minor triads two otonal pentads
[111.7313, 203.91, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 1017.5963, 1080.5572]

dwarf12marv: Marvelous dwarf: 1/4 kleismic tempered duodene
[131.3097, 200.0542, 315.6413, 431.2283, 515.6955, 631.2826, 700.0271, 815.6142, 900.0814, 1015.6684, 1131.2555]

edskes: Edskes reconstruction of organ temperament of Liebfrauenkirche Bremen (1996)
[84.1139, 193.1569, 299.5116, 386.3137, 503.4216, 579.4706, 696.5784, 783.3806, 889.7353, 998.7783, 1085.5804]

efg33355: Genus diatonico-chromaticum hodiernum correctum [33355]
[70.6724, 182.4037, 294.135, 386.3137, 498.045, 568.7174, 680.4487, 772.6274, 884.3587, 996.09, 1066.7624]

efg33377: Genus [33377] Bi-enharmonicum simplex
[203.91, 231.1741, 266.8709, 435.0841, 470.7809, 498.045, 701.955, 729.2191, 933.1291, 968.8259, 1172.7359]

efg33555: Genus bichromaticum [33555]
[203.91, 274.5824, 315.6413, 386.3137, 590.2237, 701.955, 772.6274, 813.6863, 976.5374, 1017.5963, 1088.2687]

efg3357: Genus enharmonicum vocale [3357]
[155.1396, 266.8709, 386.3137, 470.7809, 498.045, 653.1846, 701.955, 857.0946, 884.3587, 968.8259, 1088.2687]

efg33777: Genus [33777]
[35.6968, 231.1741, 239.6068, 266.8709, 470.7809, 498.045, 701.955, 729.2191, 737.6518, 933.1291, 968.8259]

efg3557: Genus enharmonicum instrumentale [3557]
[84.4672, 155.1396, 315.6413, 386.3137, 470.7809, 582.5122, 701.955, 813.6863, 857.0946, 968.8259, 1088.2687]

efg3577: Genus [3577]
[119.4428, 155.1396, 231.1741, 386.3137, 470.7809, 617.4878, 701.955, 857.0946, 933.1291, 968.8259, 1088.2687]

efg37711: Genus [3 7 7 11]
[35.6968, 186.3339, 266.8709, 417.508, 498.045, 648.6821, 684.3789, 737.6518, 915.553, 968.8259, 1146.7271]

efg55577: Genus [55577]
[155.1396, 190.1152, 231.1741, 386.3137, 541.4533, 617.4878, 772.6274, 927.767, 968.8259, 1003.8015, 1158.9411]

efg55777: Genus [55777]
[155.1396, 231.1741, 351.3381, 386.3137, 582.5122, 617.4878, 737.6518, 813.6863, 968.8259, 1044.8604, 1123.9655]

eikobag: 3)6 1.3.3.5.7.9 combination product bag
[84.4672, 266.8709, 315.6413, 498.045, 582.5122, 701.955, 764.9159, 813.6863, 968.8259, 1017.5963, 1080.5572]

ekring1: Single-tie circular mirroring of 3:4:5
[203.91, 315.6413, 386.3137, 519.5513, 590.2237, 631.2826, 772.6274, 813.6863, 884.3587, 1017.5963, 1088.2687]

ekring2: Single-tie circular mirroring of 6:7:8
[203.91, 231.1741, 266.8709, 435.0841, 470.7809, 666.2582, 737.6518, 933.1291, 968.8259, 1137.0391, 1172.7359]

ekring3: Single-tie circular mirroring of 4:5:7
[34.9756, 231.1741, 266.1497, 386.3137, 421.2893, 462.3482, 772.6274, 813.6863, 848.6619, 968.8259, 1003.8015]

ekring4: Single-tie circular mirroring of 4:5:6
[111.7313, 315.6413, 427.3726, 498.045, 631.2826, 701.955, 743.0139, 884.3587, 925.4176, 996.09, 1129.3276]

ekring5: Single-tie circular mirroring of 3:5:7
[13.7948, 48.7704, 266.8709, 364.4117, 582.5122, 617.4878, 631.2826, 666.2582, 898.1535, 933.1291, 1165.0244]

ekring6: Single-tie circular mirroring of 6:7:9
[168.2132, 231.1741, 435.0841, 498.045, 666.2582, 701.955, 764.9159, 870.1682, 996.09, 1101.3423, 1164.3032]

ekring7: Single-tie circular mirroring of 5:7:9
[34.9756, 182.4037, 217.3793, 364.8074, 435.0841, 470.0597, 764.9159, 799.8915, 870.1682, 1017.5963, 1052.5719]

elevenplus: 11-tET plus the 22-tET fifth; C-D-Eb-F-Gb-A-Bb-C' form the Orgone[7] scale
[109.0909, 218.1818, 327.2727, 436.3636, 545.4546, 654.5454, 709.0909, 763.6364, 872.7273, 981.8182, 1090.9091]

elf12f: A {352/351, 364/363} 2.3.7.11.13 elf transversal
[62.9609, 203.91, 289.2097, 435.0841, 498.045, 551.3179, 701.955, 764.9159, 910.7903, 996.09, 1137.0391]

elfkeenanismic12: Keenanismic tempered [12/11, 8/7, 6/5, 5/4, 4/3, 11/8, 3/2, 8/5, 5/3, 7/4, 11/6, 2], 284et tuning
[152.1127, 232.3944, 316.9014, 384.507, 498.5915, 549.2958, 701.4085, 815.493, 883.0986, 967.6056, 1047.8873]

elfleapday12f: Leapday tempering of [21/20, 9/8, 13/11, 14/11, 4/3, 7/5, 3/2, 11/7, 22/13, 16/9, 21/11, 2], in 46-tET, 13-limit 12f elf
[78.2609, 208.6957, 286.9565, 417.3913, 495.6522, 573.913, 704.3478, 782.6087, 913.0435, 991.3043, 1121.7391]

elfmadagascar12f: Madagascar tempering of [26/25, 15/13, 6/5, 9/7, 4/3, 7/5, 3/2, 14/9, 5/3, 26/15, 25/13, 2], 313-tET tuning
[65.1757, 249.2013, 314.377, 433.2268, 498.4026, 582.7476, 701.5974, 766.7732, 885.623, 950.7987, 1134.8243]

elfmagic12: Magic tempering of [25/24, 10/9, 6/5, 5/4, 4/3, 11/8, 3/2, 8/5, 5/3, 9/5, 27/14, 2], 104-tET tuning, patent val elf
[57.6923, 173.0769, 323.0769, 380.7692, 496.1538, 553.8461, 703.8461, 819.2308, 876.9231, 1026.9231, 1142.3077]

elfmiracle12: Miracle tempered [15/14, 8/7, 7/6, 11/9, 21/16, 7/5, 32/21, 18/11, 12/7, 7/4, 15/8, 2], 72et tuning, 11-limit patent val elf
[116.6667, 233.3333, 266.6667, 350.0, 466.6667, 583.3333, 733.3333, 850.0, 933.3333, 966.6667, 1083.3333]

elfoctacot12f: Octacot tempered [21/20, 10/9, 7/6, 11/9, 15/11, 7/5, 22/15, 14/9, 12/7, 9/5, 21/11, 2], 150-tET tuning, 13-limit 12f val
[88.0, 176.0, 264.0, 352.0, 528.0, 584.0, 672.0, 760.0, 936.0, 1024.0, 1112.0]

elfzeus12: Zeus tempering of [16/15, 11/10, 6/5, 5/4, 4/3, 11/8, 3/2, 8/5, 5/3, 7/4, 11/6, 2], 99-tET tuning
[109.0909, 157.5758, 315.1515, 387.8788, 496.9697, 545.4546, 703.0303, 812.1212, 884.8485, 969.697, 1042.4242]

ellis: Alexander John Ellis' imitation equal temperament (1875)
[99.4848, 199.4929, 299.2246, 399.4671, 499.4194, 599.871, 699.7478, 799.356, 899.4811, 999.323, 1099.67]

ellis_eb: Ellis's new equal beating temperament for pianofortes (1885)
[100.2076, 199.9351, 300.3665, 400.3042, 499.9441, 600.1251, 699.7478, 800.0797, 899.9238, 1000.4661, 1100.5079]

ellis_harm: Ellis's Just Harmonium
[111.7313, 203.91, 315.6413, 386.3137, 498.045, 519.5513, 701.955, 813.6863, 884.3587, 1017.5963, 1088.2687]

ellis_mteb: Ellis's equal beating meantone tuning (1885)
[75.7, 192.2, 310.7, 385.8, 504.7536, 580.2, 696.2623, 772.6, 889.1, 1007.8133, 1083.4]

ellis_r: Ellis's rational approximation of equal temperament
[100.0992, 200.0585, 299.9739, 400.1085, 499.9506, 599.9117, 699.957, 799.8915, 900.0261, 1000.0202, 1099.9008]

equal: Equal temperament
[100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100]

erlangen: Anonymus: Pro clavichordiis faciendis, Erlangen 15th century
[90.225, 201.9563, 294.135, 386.3137, 498.045, 588.27, 701.955, 792.18, 903.9113, 996.09, 1088.2687]

erlangen2: Revised Erlangen
[92.1787, 203.91, 294.135, 386.3137, 498.045, 590.2237, 701.955, 794.1337, 905.865, 996.09, 1088.2687]

erlich13: Just 7-limit scale by Paul Erlich
[119.4428, 231.1741, 386.3137, 435.0841, 617.4878, 701.955, 821.3978, 933.1291, 968.8259, 1003.8015, 1088.2687]

erose: Zhea Erose, Novemdeca (2020)
[88.8007, 214.0047, 330.7613, 404.442, 509.3974, 608.352, 701.955, 819.3718, 902.487, 1007.4424, 1106.397]

escot: Nicolas Escot, Arcane 17 temperament
[104.9554, 203.91, 302.8646, 407.82, 506.7746, 611.73, 701.955, 806.9104, 905.865, 1004.8196, 1109.775]

et-mix6: Mix of equal temperaments from 1-6 (= 4-6)
[200.0, 240.0, 300.0, 400.0, 480.0, 600.0, 720.0, 800.0, 900.0, 960.0, 1000.0]

euler: Euler's Monochord (a mode of Ellis's duodene) (1739), genus [33355]
[70.6724, 203.91, 274.5824, 386.3137, 498.045, 590.2237, 701.955, 772.6274, 884.3587, 976.5374, 1088.2687]

even12a: first maximally even {15/14,16/15,21/20,25/24} scale
[84.4672, 155.1396, 266.8709, 386.3137, 470.7809, 590.2237, 701.955, 772.6274, 857.0946, 968.8259, 1088.2687]

even12b: second maximally even {15/14,16/15,21/20,25/24} scale
[84.4672, 196.1985, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 786.4222, 898.1535, 968.8259, 1088.2687]

farey12_101: Common denominator=101 Farey approximation to 12-tET
[99.9066, 194.361, 298.4149, 396.5678, 502.3249, 601.9918, 696.2319, 796.4599, 891.2015, 1000.3699, 1103.0608]

farey12_116: Common denominator=116 Farey approximation to 12-tET, well-temperament
[101.4402, 197.2642, 300.6522, 398.2123, 501.7721, 599.4852, 701.955, 798.6972, 899.2192, 1002.6072, 1100.1673]

farey12_65: Common denominator=65 Farey approximation to 12-tET
[103.388, 200.9481, 293.3025, 402.221, 504.6908, 601.433, 693.054, 796.9593, 894.9798, 1002.7358, 1104.176]

farey12_80: Common denominator=80 Farey approximation to 12-tET
[104.9554, 203.91, 297.513, 403.5401, 503.4467, 597.901, 701.955, 800.1079, 905.865, 1005.5319, 1099.772]

finnamore_7: David J. Finnamore, TL 1 Sept '98. 7-tone Pyth. with 9/8 div. in 21/20 &15/14
[84.4672, 203.91, 288.3772, 407.82, 498.045, 582.5122, 701.955, 786.4222, 905.865, 990.3322, 1109.775]

finnamore_7a: David J. Finnamore, TL 1 Sept '98. 7-tone Pyth. with 9/8 div. in 15/14 &21/20
[119.4428, 203.91, 323.3528, 407.82, 498.045, 617.4878, 701.955, 821.3978, 905.865, 1025.3078, 1109.775]

fisher: Alexander Metcalf Fisher's modified meantone temperament (1818)
[76.049, 193.1569, 297.4851, 386.3137, 502.4283, 579.4706, 696.5784, 780.0679, 889.7353, 1004.8565, 1082.8921]

fj-12tet: Franck Jedrzejewski continued fractions approx. of 12-tet
[100.0992, 199.9798, 299.9739, 400.1085, 498.045, 600.0883, 699.9977, 800.9096, 900.0261, 1000.0202, 1088.2687]

flattone12: Flattone[12] in 13-limit POTE tuning
[134.7112, 186.1155, 320.8267, 372.2311, 506.9422, 558.3466, 693.0578, 827.7689, 879.1733, 1013.8845, 1065.2888]

flavel: Bill Flavel's just tuning, mode of Ellis's Just Harmonium. Tuning List 06-05-98
[70.6724, 182.4037, 203.91, 386.3137, 498.045, 568.7174, 701.955, 772.6274, 884.3587, 996.09, 1088.2687]

fogliano1: Fogliano's Monochord no.1, Musica theorica (1529). Fokker block 81/80 128/125
[70.6724, 182.4037, 315.6413, 386.3137, 498.045, 568.7174, 701.955, 772.6274, 884.3587, 996.09, 1088.2687]

fogliano2: Fogliano's Monochord no.2
[70.6724, 203.91, 315.6413, 386.3137, 498.045, 568.7174, 701.955, 772.6274, 884.3587, 1017.5963, 1088.2687]

fokker_12: Fokker's 7-limit 12-tone just scale
[119.4428, 203.91, 266.8709, 386.3137, 498.045, 590.2237, 701.955, 821.3978, 884.3587, 968.8259, 1088.2687]

fokker_12a: Fokker's 7-limit periodicity block of 2048/2025 & 3969/4000 & 225/224
[84.4672, 196.1985, 288.3772, 386.3137, 498.045, 590.2237, 694.2435, 786.4222, 898.1535, 996.09, 1088.2687]

fokker_12b: Fokker's 7-limit semitone scale KNAW B72, 1969
[92.1787, 196.1985, 288.3772, 413.5778, 498.045, 590.2237, 701.955, 786.4222, 898.1535, 1003.8015, 1107.8213]

fokker_12c: Fokker's 7-limit complementary semitone scale, KNAW B72, 1969
[92.1787, 196.1985, 301.8465, 413.5778, 498.045, 609.7763, 701.955, 786.4222, 911.6228, 1003.8015, 1107.8213]

fokker_12m: Fokker's 12-tone 31-tET mode, has 3 4:5:6:7 tetrads + 3 inv.
[116.129, 193.5484, 270.9677, 387.0968, 503.2258, 580.6452, 696.7742, 812.9032, 890.3226, 967.7419, 1083.871]

fokker_12t: Tempered version of fokker_12.scl with egalised 225/224, see also lumma.scl
[114.6107, 199.2374, 268.0849, 384.3519, 499.2824, 584.2049, 699.22, 815.5863, 884.3252, 968.9655, 1083.5743]

fokker_12t2: Another tempered version of fokker_12.scl with egalised 225/224
[114.6032, 199.207, 268.101, 384.3537, 499.3874, 584.1776, 699.2113, 815.464, 884.3587, 968.9618, 1083.565]

foote: Ed Foote, piano temperament. TL 9 Jun 1999, almost equal to Coleman
[97.0, 197.0, 297.0, 394.0, 501.0, 595.0, 699.0, 797.0, 896.0, 999.0, 1094.0]

foote2: Ed Foote´s temperament with 1/6, 1/8 and 1/12 Pyth comma fractions
[98.045, 197.0675, 298.045, 394.135, 501.955, 596.09, 699.0225, 798.045, 896.09, 1000.0, 1094.135]

fortuna11: 11-limit scale from Clem Fortuna
[84.4672, 231.1741, 266.8709, 417.508, 470.7809, 617.4878, 729.2191, 782.492, 933.1291, 968.8259, 1115.5328]

fortuna_a1: Clem Fortuna, Arabic mode of 24-tET, try C or G major, superset of Basandida, trivalent
[100.0, 200.0, 300.0, 350.0, 500.0, 600.0, 700.0, 800.0, 900.0, 1000.0, 1050.0]

fortuna_a2: Clem Fortuna, Arabic mode of 24-tET, try C or F minor
[100.0, 150.0, 300.0, 400.0, 500.0, 600.0, 700.0, 852.5921, 900.0, 1000.0, 1100.0]

fortuna_bag: Bagpipe tuning from Fortuna, try key of G with F natural
[29.8496, 187.6819, 256.5965, 343.0906, 493.9571, 548.6483, 684.7286, 729.8787, 871.9484, 985.7989, 1049.3629]

fortuna_eth: Ethiopian Tunings from Fortuna
[119.4428, 170.4228, 269.8481, 369.7468, 484.0268, 595.149, 669.5945, 795.558, 830.2532, 1012.657, 1065.0303]

fortuna_sheng: Sheng scale on naturals starting on d, from Fortuna
[88.1546, 159.9198, 309.3573, 350.1193, 498.045, 586.8457, 658.1239, 810.4534, 875.2229, 1005.8987, 1067.7805]

francis_924-1: J. Charles Francis, Bach temperament for BWV 924 version 1 (2005)
[92.18, 203.91, 296.09, 400.6517, 500.0, 590.225, 701.955, 794.135, 905.865, 998.045, 1095.4383]

francis_924-2: J. Charles Francis, Bach temperament for BWV 924 version 2 (2005)
[92.18, 203.91, 296.09, 400.6517, 500.0, 590.225, 701.955, 801.3033, 905.865, 998.045, 1095.4383]

francis_924-3: J. Charles Francis, Bach temperament for BWV 924 version 3 (2005)
[99.3483, 203.91, 303.2583, 400.6517, 507.1683, 597.3933, 701.955, 801.3033, 905.865, 1005.2133, 1095.4383]

francis_924-4: J. Charles Francis, Bach temperament for BWV 924 version 4 (2005)
[99.3483, 203.91, 303.2583, 400.6517, 507.1683, 597.3933, 701.955, 808.4717, 905.865, 1005.2133, 1095.4383]

francis_r12-14p: Bach WTC theoretical temperament, 1/14 Pyth. comma, Cornet-ton, same Maunder III
[100.2793, 197.2071, 300.8379, 394.4143, 501.3964, 598.3243, 698.6036, 800.5586, 895.8107, 1001.1171, 1096.3693]

francis_r12-2: J. Charles Francis, Bach WTC temperament R12-2, fifths beat ratios 0, 1, 2. C=279.331 Cornet-ton
[100.6282, 197.0098, 301.2864, 394.7632, 501.1411, 598.6732, 697.8182, 800.6328, 895.2735, 1001.5045, 1096.7182]

francis_r2-1: J. Charles Francis, Bach WTC temperament R2-1, fifths beat ratios 0, 1, 2. C=249.072 Cammerton
[95.2136, 198.4954, 299.1236, 395.5052, 499.7818, 593.2586, 699.6365, 797.1686, 896.3136, 999.1282, 1093.7689]

francis_r2-14p: Bach WTC theoretical temperament, 1/14 Pyth. comma, Cammerton
[95.2521, 198.8829, 299.1621, 396.09, 499.7207, 593.2971, 700.2793, 797.2071, 897.4864, 999.4414, 1094.6936]

francis_seal: J. Charles Francis, Bach tuning interpretion as beats/sec. from seal
[91.9662, 196.15, 295.876, 391.05, 499.786, 590.011, 697.303, 793.921, 891.872, 997.831, 1089.29]

francis_suppig: J. Charles Francis, Suppig Calculus musicus, 5ths beat ratios 0, 1, 2.
[94.7, 196.9, 297.3, 394.5, 501.2, 592.8, 697.7, 796.7, 895.0, 999.3, 1093.1]

freiberg: Temperament of G. Silbermann organ (1735), St. Petri in Freiberg (1985), a=476.3
[90.225, 196.09, 298.045, 394.135, 500.0, 590.225, 698.045, 790.225, 896.09, 1000.0, 1092.18]

freivald-star: Jake Freivald, starling scale, approximately 8, 15, 20, 25, 28, 32, 40, 45, 60, 65, 72, 77 steps of 77-tET
[123.54, 232.173, 311.102, 390.031, 434.641, 498.663, 622.203, 701.132, 933.304, 1012.233, 1120.866]

freivald_canton: Jake Freivald, a 2.3.11/7.13/7 subgroup scale
[128.2982, 203.91, 289.2097, 417.508, 498.045, 573.6568, 701.955, 782.492, 910.7903, 996.09, 1071.7018]

fribourg: Manderscheidt organ in Fribourg (1640), modified meantone
[91.2025, 195.1125, 306.8425, 387.2925, 500.9775, 589.2475, 698.045, 781.4275, 892.18, 1004.8875, 1087.2925]

frischknecht2: Frischknecht II organ temperament, 1/8 P
[96.09, 198.045, 300.0, 396.09, 500.9775, 597.0675, 699.0225, 798.045, 897.0675, 1001.955, 1095.1125]

gabler: In 1982 reconstructed temperament of organ in Weingarten by Joseph Gabler (1737-1750)
[85.4352, 194.917, 304.9853, 390.9092, 500.9775, 588.1722, 700.0, 785.4352, 892.9131, 1002.9814, 1088.1722]

galilei: Vincenzo Galilei's approximation
[103.0, 198.0, 301.0, 396.0, 495.0, 594.0, 693.0, 792.0, 891.0, 990.0, 1089.0]

gamelan_udan: Gamelan Udan Mas (approx) s6,p6,p7,s1,p1,s2,p2,p3,s3,p4,s5,p5
[0.0, 182.4037, 266.8709, 427.3726, 510.367, 571.7257, 701.955, 745.7861, 996.09, 996.09, 1126.3193]

ganassi: Sylvestro Ganassi's temperament (1543)
[88.8007, 182.4037, 281.3583, 386.3137, 498.045, 596.9996, 701.955, 790.7557, 884.3587, 983.3133, 1088.2687]

genovese_12: Denny Genovese's superposition of harmonics 8-16 and subharmonics 6-12
[150.6371, 203.91, 315.6413, 386.3137, 498.045, 551.3179, 701.955, 840.5277, 933.1291, 968.8259, 1088.2687]

gluck: Thomas Glück Bach temperament
[99.0225, 198.045, 299.0225, 396.09, 500.9775, 598.045, 699.0225, 799.0225, 897.0675, 999.0225, 1097.0675]

goebel: Joseph Goebel quasi equal temperament (1967)
[100.278, 200.377, 300.297, 400.287, 500.029, 600.195, 700.189, 800.15, 900.169, 1000.118, 1100.052]

grady11: Kraig Grady's dual [5 7 9 11] hexany scale
[101.8667, 182.4037, 266.8709, 417.508, 536.9508, 638.9941, 701.955, 821.3978, 972.0349, 1056.5021, 1137.0391]

grady_beebalm: Kraig Grady, Beebalm (a Monarda Variation)
[104.9554, 203.91, 266.8709, 386.3137, 498.045, 603.0004, 701.955, 764.9159, 884.3587, 996.09, 1101.0454]

grady_centaur: Kraig Grady's 7-limit Centaur scale (1987), Xenharmonikon 16
[84.4672, 203.91, 266.8709, 386.3137, 498.045, 582.5122, 701.955, 764.9159, 884.3587, 968.8259, 1088.2687]

grady_centaura: Kraig Grady, 11 limit variation to Centaur (2019)
[53.2729, 203.91, 266.8709, 386.3137, 498.045, 551.3179, 701.955, 764.9159, 884.3587, 968.8259, 1088.2687]

grady_centaurmarv: 1/4-kleismic marvel tempered centaur/meandin
[84.4672, 200.0542, 268.7988, 384.3858, 499.9729, 584.4401, 700.0271, 768.7717, 884.3587, 968.8259, 1084.4129]

grady_mirror_meta_slendro12: 12-tone slendro generated from 'fifth' based recurrent series by Kraig Grady
[192.8236, 226.521, 419.3446, 453.0421, 645.8656, 679.5631, 713.2605, 906.0841, 939.7815, 1132.6051, 1166.3026]

graf-sorge: Gräf-Sorge organ temperament, 1/6 P
[94.135, 196.09, 298.045, 400.0, 501.955, 596.09, 698.045, 796.09, 898.045, 1000.0, 1098.045]

grammateus: H. Grammateus (Heinrich Schreiber) (1518). B-F# and Bb-F 1/2 P. Also Marpurg nr.6 and Baron von Wiese and Maria Renold
[101.955, 203.91, 305.865, 407.82, 498.045, 600.0, 701.955, 803.91, 905.865, 1007.82, 1109.775]

graupner: Johann Gottlieb Graupner's temperament (1819)
[99.3808, 199.5628, 299.1865, 399.5995, 499.44, 600.0592, 700.0933, 799.578, 899.8589, 999.5754, 1100.0767]

groenewald: Jürgen Grönewald, new meantone temperament (2001)
[101.955, 193.1569, 304.8881, 396.09, 498.045, 600.0, 701.955, 803.91, 895.1119, 1006.8431, 1098.045]

groenewald_bach: Jürgen Grönewald, simplified Bach temperament, Ars Organi vol.57 no.1, March 2009, p.39
[90.225, 189.2501, 294.135, 386.606, 498.045, 588.27, 693.1751, 792.18, 887.2751, 996.09, 1086.8081]

h12_24: 12-tET harmonic approximation, fundamental=24
[70.6724, 203.91, 327.6222, 386.3137, 498.045, 603.0004, 701.955, 795.558, 884.3587, 1009.5627, 1088.2687]

hahn_7: Paul Hahn's scale with 32 consonant 7-limit dyads. TL '99, see also smithgw_hahn12.scl
[84.4672, 266.8709, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 968.8259, 1080.5572]

hahn_g: Paul Hahn, fourth of sqrt(2)-1 octave "recursive" meantone (1999)
[120.6061, 205.8875, 291.1688, 411.7749, 497.0563, 617.6623, 702.9437, 823.5498, 908.8312, 994.1126, 1114.7186]

hahnmaxr: Paul Hahn's hahn_7.scl marvel projected to the 5-limit
[92.1787, 274.5824, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 813.6863, 884.3587, 976.5374, 1088.2687]

hamilton: Elsie Hamilton's gamut, from article The Modes of Ancient Greek Music (1953)
[80.537, 165.0042, 253.8049, 347.4079, 446.3625, 551.3179, 663.0492, 782.492, 845.4529, 910.7903, 1049.3629]

hamilton_jc: Chalmers' permutation of Hamilton's gamut. Diatonic notes on white
[80.537, 165.0042, 253.8049, 347.4079, 551.3179, 446.3625, 782.492, 663.0492, 910.7903, 845.4529, 1049.3629]

hamilton_jc2: EH gamut, diatonic notes on white and drops 17 for 25. JC Dorian Harmonia on C. Schlesinger's Solar scale
[80.537, 165.0042, 253.8049, 347.4079, 551.3179, 663.0492, 782.492, 845.4529, 910.7903, 978.6905, 1049.3629]

hammond12: Hammond organ scale, 1/1=277.0731707 Hz, A=440, see hammond.scl for the ratios
[100.8834, 200.5955, 300.2882, 400.0029, 500.7099, 600.704, 699.9768, 800.6838, 900.3985, 1000.0912, 1100.1073]

handblue: "Handy Blues" of Pitch Palette, 7-limit
[111.7313, 203.91, 266.8709, 386.3137, 498.045, 582.5122, 701.955, 764.9159, 884.3587, 968.8259, 1088.2687]

handel: Well temperament according to Georg Friedrich Händel's rules (c. 1780)
[93.0402, 195.4644, 296.9502, 395.6208, 498.9834, 592.962, 697.263, 794.9952, 895.5426, 997.9668, 1094.7606]

handel2: Another "Händel" temperament, C. di Veroli
[99.7117, 199.9233, 299.6217, 399.8333, 499.5317, 599.7567, 699.455, 799.6667, 899.8783, 999.5767, 1100.3017]

hanfling-bumler: The Hänfling/Bümler equal temperament from Mattheson, June 1722, corrected
[99.9987, 199.9975, 300.0029, 400.0011, 500.0082, 600.0044, 699.9998, 800.0014, 900.0031, 1000.0032, 1100.0051]

harm12: Harmonics 12 to 24
[138.5727, 266.8709, 386.3137, 498.045, 603.0004, 701.955, 795.558, 884.3587, 968.8259, 1049.3629, 1126.3193]

harm12_2: Harmonics 12 to 24, mode 9
[104.9554, 203.91, 297.513, 386.3137, 470.7809, 551.3179, 628.2743, 701.955, 840.5277, 968.8259, 1088.2687]

harm15a: Twelve out of harmonics 15 to 30
[111.7313, 216.6867, 315.6413, 409.2443, 498.045, 582.5122, 663.0492, 813.6863, 884.3587, 952.2589, 1080.5572]

harm20_12: 12-tone subset of harmonics 20 to 40
[84.4672, 165.0042, 315.6413, 386.3137, 454.2139, 582.5122, 701.955, 813.6863, 918.6417, 1017.5963, 1111.1993]

harm24_12: 12-tone subset of harmonics 24 to 48
[138.5727, 203.91, 266.8709, 386.3137, 498.045, 551.3179, 701.955, 840.5277, 884.3587, 968.8259, 1088.2687]

harm_perkis: Harmonics 60 to 30 (Perkis)
[119.4428, 182.4037, 315.6413, 386.3137, 498.045, 617.4878, 701.955, 790.7557, 884.3587, 933.1291, 1088.2687]

harmd-phr: HarmD-Phryg (with 5 extra tones)
[70.6724, 138.5727, 203.91, 266.8709, 498.045, 386.3137, 701.955, 795.558, 884.3587, 968.8259, 1049.3629]

harmjc-15: Rationalized JC Sub-15 Harmonia on C. MD=15, No planetary assignment.
[119.4428, 247.7411, 315.6413, 386.3137, 536.9508, 617.4878, 701.955, 790.7557, 884.3587, 983.3133, 1088.2687]

harmjc-17: Rationalized JC Sub-17 Harmonia on C. MD=17, No planetary assignment.
[51.6825, 104.9554, 216.6867, 336.1295, 464.4277, 532.328, 603.0004, 676.6811, 753.6375, 834.1745, 918.6417]

harmjc-17-2: Rationalized JC Sub-17 Harmonia on C. MD=17, No planetary assignment.
[104.9554, 216.6867, 336.1295, 464.4277, 603.0004, 676.6811, 753.6375, 834.1745, 918.6417, 1007.4424, 1101.0454]

harmjc-19: Rationalized JC Sub-19 Harmonia on C. MD=19, No planetary assignment.
[93.603, 192.5576, 297.513, 409.2443, 528.6871, 656.9854, 795.558, 869.2387, 946.1951, 1026.7321, 1111.1993]

harmjc-19-2: Rationalized JC Sub-19 Harmonia on C. MD=19, No planetary assignment.
[93.603, 192.5576, 297.513, 409.2443, 528.6871, 591.648, 656.9854, 724.8856, 795.558, 869.2387, 946.1951]

harmjc-21: Rationalized JC Sub-21 Harmonia on C. MD=21, No planetary assignment.
[41.7185, 84.4672, 173.2679, 266.8709, 470.7809, 582.5122, 701.955, 764.9159, 830.2532, 898.1535, 968.8259]

harmjc-23: Rationalized JC Sub-23 Harmonia on C. MD=23, No planetary assignment.
[76.9564, 241.9606, 330.7613, 424.3643, 628.2743, 740.0056, 859.4484, 922.4093, 987.7467, 1055.6469, 1126.3193]

harmjc-23-2: Rationalized JC Sub-23 Harmonia on C. MD=23, No planetary assignment.
[76.9564, 157.4934, 241.9606, 330.7613, 424.3643, 523.3189, 628.2743, 740.0056, 859.4484, 987.7467, 1126.3193]

harmjc-25: Rationalized JC Sub-25 Harmonia on C. MD=25, No planetary assignment.
[70.6724, 221.3095, 301.8465, 386.3137, 568.7174, 667.672, 772.6274, 884.3587, 1003.8015, 1066.7624, 1132.0998]

harmjc-27: Rationalized JC Sub-27 Harmonia on C. MD=27, No planetary assignment.
[65.3373, 203.91, 277.5907, 354.5471, 519.5513, 608.352, 701.955, 800.9096, 905.865, 1017.5963, 1137.0391]

harmjc-hypod16: Rationalized JC Hypodorian Harmonia on C. Saturn Scale on C, MD=16. (Steiner)
[111.7313, 231.1741, 294.135, 359.4723, 498.045, 571.7257, 648.6821, 729.2191, 813.6863, 902.487, 996.09]

harmjc-hypol20: Rationalized JC Hypolydian Harmonia on C. Mars scale on C., MD=20
[88.8007, 182.4037, 281.3583, 386.3137, 498.045, 617.4878, 745.7861, 813.6863, 884.3587, 958.0394, 1365.0042]

harmjc-hypop18: Rationalized JC Hypophrygian Harmonia on C. Jupiter scale on C, MD =18
[98.9546, 203.91, 315.6413, 435.0841, 563.3823, 631.2826, 701.955, 775.6357, 852.5921, 933.1291, 1017.5963]

harmjc-lydian13: Rationalized JC Lydian Harmonia on Schlesinger's Mercury scale on C, MD = 26 or 13
[67.9002, 138.5727, 212.2533, 289.2097, 454.2139, 543.0146, 636.6177, 735.5723, 840.5277, 952.2589, 1071.7018]

harmjc-mix14: Rationalized JC Mixolydian Harmonia on Schlesinger's Moon Scale on C, MD = 14
[62.9609, 128.2982, 196.1985, 266.8709, 417.508, 498.045, 582.5122, 671.3129, 764.9159, 863.8705, 968.8259]

harmjc-phryg12: Rationalized JC Phrygian Harmonia on Schlesinger's Venus scale on C, MD = 24 or 12
[73.6807, 150.6371, 231.1741, 315.6413, 498.045, 596.9996, 701.955, 813.6863, 933.1291, 996.09, 1061.4273]

harmonical: See pages 17 and 466-468 of Helmholtz. Lower 4 oct. instrument designed and tuned by Ellis
[182.4037, 203.91, 315.6413, 386.3137, 498.045, 701.955, 813.6863, 884.3587, 968.8259, 1017.5963, 1088.2687]

harmonical_up: Upper 2 octaves of Ellis's Harmonical
[104.9554, 203.91, 297.513, 386.3137, 551.3179, 968.8259, 701.955, 772.6274, 840.5277, 1029.5772, 1088.2687]

harmsub16: 16 harmonics on 1/1 and 16 subharmonics on 15/8
[119.4428, 203.91, 247.7411, 386.3137, 536.9508, 551.3179, 701.955, 840.5277, 884.3587, 968.8259, 1088.2687]

harrison_cinna: Lou Harrison, "Incidental Music for Corneille's Cinna" (1955-56) 1/1=C
[70.6724, 203.91, 315.6413, 386.3137, 470.7809, 590.2237, 701.955, 813.6863, 884.3587, 968.8259, 1088.2687]

harrison_slye: 11-limit scale by Lou Harrison and Bill Slye for National Reso-Phonic Just Intonation Guitar
[62.9609, 203.91, 266.8709, 386.3137, 498.045, 551.3179, 701.955, 764.9159, 884.3587, 968.8259, 1049.3629]

harrison_songs: Shared gamut of "Four Strict Songs" (1951-55), each pentatonic
[62.9609, 203.91, 294.135, 386.3137, 498.045, 590.2237, 701.955, 764.9159, 905.865, 996.09, 1088.2687]

harrisonj: John Harrison's temperament (1775), almost 3/10-comma. Third = 1200/pi
[68.4508, 190.9859, 313.5211, 381.9719, 504.507, 572.9578, 695.493, 763.9437, 886.4789, 1009.0141, 1077.4648]

harrisonm_rev: Michael Harrison, piano tuning for "Revelation" (2001), 1/1=F
[-27.2641, 203.91, 176.6459, 407.82, 470.7809, 611.73, 701.955, 674.6909, 905.865, 968.8259, 1109.775]

hawkes: William Hawkes' modified 1/5-comma meantone (1807)
[83.5762, 195.3075, 295.1119, 390.615, 502.3463, 585.9225, 697.6537, 785.5312, 892.9612, 1004.6925, 1088.2687]

hawkes2: Meantone with fifth tempered 1/6 of 53-tET step by William Hawkes (1808)
[87.2699, 196.3628, 305.4558, 392.7257, 501.8186, 589.0885, 698.1814, 785.4513, 894.5443, 1003.6372, 1090.9071]

hawkes3: William Hawkes' modified 1/5-comma meantone (1811)
[83.5762, 195.3075, 302.7375, 390.615, 502.3463, 585.9225, 697.6537, 785.5312, 892.9612, 1004.6925, 1088.2687]

hemony: Average tuning of 10 Hemony carillons, 1/4-comma meantone, Lehr, 1999
[75.5, 193.0, 310.5, 386.0, 503.5, 580.0, 696.5, 772.0, 889.5, 1007.0, 1082.5]

hen12: Adjusted Hahn12
[119.4428, 231.1741, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 933.1291, 968.8259, 1088.2687]

heun: Well temperament for organ of Jan Heun (1805), 12 out of 55-tET (1/6-comma meantone)
[87.2727, 196.3636, 305.4545, 392.7273, 501.8182, 589.0909, 698.1818, 785.4546, 894.5454, 1003.6364, 1090.9091]

hexany2: Hexany Cluster 2
[70.6724, 203.91, 315.6413, 386.3137, 456.9861, 498.045, 568.7174, 701.955, 772.6274, 884.3587, 1088.2687]

hexany3: Hexany Cluster 3
[70.6724, 182.4037, 315.6413, 386.3137, 498.045, 701.955, 813.6863, 884.3587, 1017.5963, 1088.2687, 1129.3276]

hexany4: Hexany Cluster 4
[70.6724, 203.91, 315.6413, 386.3137, 498.045, 631.2826, 701.955, 813.6863, 884.3587, 1017.5963, 1088.2687]

hexany5: Hexany Cluster 5
[203.91, 315.6413, 386.3137, 498.045, 701.955, 772.6274, 813.6863, 884.3587, 1017.5963, 1088.2687, 1129.3276]

hexany6: Hexany Cluster 6, periodicity block 125/108 and 135/128
[70.6724, 182.4037, 203.91, 315.6413, 386.3137, 498.045, 701.955, 772.6274, 813.6863, 884.3587, 1088.2687]

hexany7: Hexany Cluster 7
[70.6724, 315.6413, 386.3137, 498.045, 568.7174, 701.955, 772.6274, 813.6863, 884.3587, 1017.5963, 1088.2687]

hexany8: Hexany Cluster 8
[70.6724, 315.6413, 386.3137, 456.9861, 498.045, 701.955, 772.6274, 813.6863, 884.3587, 1088.2687, 1129.3276]

hexany_4375: Hexany ragismic (4375/4374) 5-limit convex closure
[119.8386, 253.0761, 386.3137, 435.4799, 568.7174, 617.8836, 701.955, 751.1211, 884.3587, 933.5249, 1066.7624]

hexany_cl: Hexany Cluster 1
[203.91, 244.9689, 315.6413, 386.3137, 498.045, 519.5513, 631.2826, 701.955, 813.6863, 1017.5963, 1129.3276]

hexanys: Hexanys 1 3 5 7 9
[155.1396, 203.91, 386.3137, 470.7809, 590.2237, 701.955, 857.0946, 905.865, 968.8259, 1088.2687, 1172.7359]

hexanys-valentino: hexanys tempered in 13-limit POTE-tuned valentino
[155.916, 203.2438, 389.7899, 467.7479, 593.0338, 701.6219, 857.5379, 904.8657, 966.126, 1091.4118, 1169.3698]

hexanys2: Hexanys 1 3 7 11 13
[320.1438, 840.5277, 968.8259, 53.2729, 609.3536, 701.955, 1022.0988, 342.4827, 551.3179, 470.7809, 191.8456]

hexy: Maximized 9-limit harmony containing a hexany
[84.4672, 203.91, 266.8709, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 968.8259, 1080.5572]

hexy-miraculous: hexy in 13-limit POTE-tuned miraculous
[84.2194, 200.9667, 266.0222, 382.7694, 499.5167, 583.7361, 700.4833, 817.2306, 882.2861, 966.5055, 1083.2528]

hexymarv: Marvel-tempered hexy, 197-tET
[85.2792, 201.0152, 268.0203, 383.7563, 499.4924, 584.7716, 700.5076, 816.2437, 883.2487, 968.5279, 1084.264]

highschool1: First 12-note Highschool scale
[84.4672, 203.91, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 968.8259, 1088.2687]

highschool1-rodan: 12highschool1 tempered in 13-limit POTE-tuned rodan
[82.7679, 206.8928, 317.2501, 386.1963, 496.5536, 579.3215, 703.4464, 813.8037, 882.7499, 965.5179, 1089.6427]

highschool2: Second 12-note Highschool scale
[119.4428, 203.91, 315.6413, 386.3137, 498.045, 617.4878, 701.955, 813.6863, 884.3587, 968.8259, 1088.2687]

highschool2-miracle: 12highschool2 tempered in 11-limit POTE-tuned miracle
[116.6327, 199.5929, 316.2257, 383.5708, 500.2035, 616.8363, 699.7965, 816.4292, 883.7743, 966.7345, 1083.3673]

highschool3: Third 12-note Highschool scale, inverse is fourth Highschool scale
[111.7313, 231.1741, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 968.8259, 1088.2687]

hill: Robert Hill, Bach temperament based on 1/13 P (2008)
[95.6388, 196.6915, 297.7442, 393.3831, 501.6542, 595.4885, 698.3458, 795.7892, 895.0373, 999.6992, 1095.3381]

hinsz_gr: Reconstructed Hinsz temperament, organ Pelstergasthuiskerk Groningen. Ortgies,2002
[84.36, 192.18, 294.135, 384.36, 498.045, 582.405, 696.09, 786.315, 888.27, 996.09, 1086.315]

hirashima: Tatsushi Hirashima, temperament of chapel organ of Kobe Shoin Women's Univ.
[100.9781, 193.1569, 304.8881, 386.3137, 503.4216, 599.0231, 696.5784, 802.9331, 889.7353, 1006.8431, 1082.8921]

hochgartz: Michael Hochgartz, modified 1/5-comma meantone temperament
[83.5762, 195.3075, 292.9612, 390.615, 502.3463, 585.9225, 697.6537, 788.2687, 892.9612, 997.6537, 1088.2687]

holder: William Holder's equal beating meantone temperament (1694). 3/2 beats 2.8 Hz
[81.473, 193.586, 307.401, 388.267, 502.671, 583.932, 695.768, 777.526, 890.009, 1004.177, 1085.279]

holder2: Holder's irregular e.b. temperament with improved Eb and G#
[81.473, 193.586, 307.401, 388.267, 502.671, 583.932, 695.768, 780.479, 890.009, 1004.813, 1085.279]

hummel: Johann Nepomuk Hummel's quasi-equal temperament (1829)
[99.9233, 199.3042, 299.4862, 399.1098, 499.5228, 599.3633, 699.9826, 800.0166, 899.5014, 999.7822, 1099.4987]

hummel2: Johann Nepomuk Hummel's temperament according to the second bearing plan, also John Marsh's quasi-equal temperament (1840)
[100.2809, 199.9973, 300.4986, 400.422, 499.8028, 599.9848, 699.6085, 800.0215, 899.8619, 1000.4812, 1100.5152]

hypo_chrom: Hypolydian Chromatic Tonos
[88.8007, 134.9697, 182.4037, 498.045, 617.4878, 680.4487, 745.7861, 813.6863, 848.6619, 884.3587, 958.0394]

hypo_diat: Hypolydian Diatonic Tonos
[182.4037, 281.3583, 386.3137, 498.045, 617.4878, 680.4487, 745.7861, 884.3587, 958.0394, 1034.9958, 1115.5328]

hypo_enh: Hypolydian Enharmonic Tonos
[43.8311, 66.1699, 88.8007, 498.045, 617.4878, 680.4487, 745.7861, 779.4033, 796.4599, 813.6863, 996.09]

hypod_chrom: Hypodorian Chromatic Tonos
[111.7313, 170.4228, 231.1741, 359.4723, 498.045, 571.7257, 648.6821, 729.2191, 770.9376, 813.6863, 996.09]

hypod_diat: Hypodorian Diatonic Tonos
[111.7313, 231.1741, 359.4723, 427.3726, 498.045, 571.7257, 648.6821, 813.6863, 902.487, 996.09, 1095.0446]

hypod_enh: Hypodorian Enharmonic Tonos
[54.9644, 83.1152, 111.7313, 294.135, 498.045, 571.7257, 648.6821, 688.4823, 708.7309, 729.2191, 948.656]

hypop_chrom: Hypophrygian Chromatic Tonos
[98.9546, 150.6371, 203.91, 435.0841, 563.3823, 631.2826, 701.955, 775.6357, 813.6863, 852.5921, 1017.5963]

hypop_diat: Hypophrygian Diatonic Tonos
[203.91, 258.8744, 315.6413, 435.0841, 563.3823, 631.2826, 701.955, 852.5921, 933.1291, 1017.5963, 1106.397]

hypop_enh: Hypophrygian Enharmonic Tonos
[48.7704, 73.6807, 98.9546, 315.6413, 563.3823, 631.2826, 701.955, 738.4034, 756.9194, 775.6357, 1017.5963]

indian-hrdaya1: From Hrdayakautaka of Hrdaya Narayana (17th c) Bhatkande's interpretation
[133.2376, 203.91, 315.6413, 394.3473, 498.045, 623.6052, 701.955, 852.5921, 905.865, 1017.5963, 1096.3023]

indian-hrdaya2: From Hrdayakautaka of Hrdaya Narayana (17th c) Levy's interpretation
[133.2376, 203.91, 315.6413, 404.442, 498.045, 631.2826, 701.955, 852.5921, 933.1291, 1017.5963, 1106.397]

indian-invrot: Inverted and rotated North Indian gamut
[41.0589, 111.7313, 315.6413, 386.3137, 427.3726, 498.045, 701.955, 813.6863, 925.4176, 1088.2687, 1129.3276]

indian-vina3: Tuning of K.S. Subramanian's vina (1983)
[90.225, 203.91, 294.135, 386.3137, 498.045, 590.2237, 701.955, 792.18, 905.865, 996.09, 1088.2687]

indian_12: North Indian Gamut, modern Hindustani gamut out of 22 or more shrutis
[111.7313, 203.91, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 813.6863, 905.865, 1017.5963, 1088.2687]

indian_12c: Carnatic gamut. Kuppuswami: Carnatic music and the Tamils, p. v
[98.9546, 203.91, 315.6413, 394.3473, 498.045, 596.9996, 701.955, 800.9096, 905.865, 1017.5963, 1096.3023]

indian_rot: Rotated North Indian Gamut
[70.6724, 111.7313, 274.5824, 386.3137, 498.045, 701.955, 772.6274, 813.6863, 884.3587, 1088.2687, 1158.9411]

interbartolo1: Graziano Interbartolo & Paolo Venturino Bach temperament nr.1 (2006)
[92.1787, 193.1569, 298.3706, 386.3137, 503.4216, 590.2237, 696.5784, 795.2747, 889.7353, 1001.4666, 1088.2687]

interbartolo2: Graziano Interbartolo & Paolo Venturino Bach temperament nr.2 (2006)
[90.225, 192.18, 298.045, 384.36, 503.91, 588.27, 696.09, 794.135, 888.27, 1001.955, 1086.315]

interbartolo3: Graziano Interbartolo & Paolo Venturino Bach temperament nr.3 (2006)
[90.225, 193.1569, 297.7194, 386.3137, 503.4216, 590.2237, 696.5784, 793.9722, 889.7353, 1001.4666, 1088.2687]

italian: Italian organ temperament, G.C. Klop (1974), 1/12 P.comma, also d'Alembert/Rousseau (1752/67)
[84.36, 192.18, 288.27, 384.36, 496.09, 584.36, 696.09, 784.36, 888.27, 992.18, 1084.36]

janke1: Reiner Janke, Temperatur I (1998)
[95.0, 198.0, 297.0, 396.0, 499.0, 594.0, 699.0, 796.0, 897.0, 998.0, 1095.0]

janke2: Reiner Janke, Temperatur II
[95.0, 196.0, 297.0, 394.0, 499.0, 594.0, 698.0, 796.0, 895.0, 998.0, 1093.0]

janke3: Reiner Janke, Temperatur III
[94.0, 196.0, 296.0, 393.0, 499.0, 593.0, 698.0, 795.0, 894.0, 998.0, 1092.0]

janke4: Reiner Janke, Temperatur IV
[92.0, 196.0, 298.0, 392.0, 500.0, 591.0, 698.0, 794.0, 894.0, 999.0, 1091.0]

janke5: Reiner Janke, Temperatur V
[90.0, 196.0, 294.0, 392.0, 498.0, 588.0, 698.0, 792.0, 894.0, 996.0, 1090.0]

janke6: Reiner Janke, Temperatur VI
[91.0, 196.0, 297.0, 392.0, 501.0, 589.0, 698.0, 794.0, 894.0, 999.0, 1090.0]

janke7: Reiner Janke, Temperatur VII
[89.0, 195.0, 300.0, 391.0, 502.0, 586.0, 698.0, 793.0, 893.0, 1004.0, 1089.0]

ji_12: Basic JI with 7-limit tritone. Robert Rich: Geometry
[111.7313, 203.91, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 1017.5963, 1088.2687]

ji_12a: 7-limit 12-tone scale
[111.7313, 203.91, 266.8709, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 933.1291, 968.8259, 1088.2687]

ji_12b: alternate 7-limit 12-tone scale
[70.6724, 182.4037, 266.8709, 386.3137, 470.7809, 582.5122, 701.955, 813.6863, 933.1291, 968.8259, 1088.2687]

ji_12coh: Differentially coherent 12-tone scale with subharmonic 60
[111.7313, 191.0383, 315.6413, 409.2443, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 985.2358, 1080.5572]

jioct12: 12-tone JI version of Messiaen's octatonic scale, Erlich & Parízek
[70.6724, 133.2376, 253.0761, 315.6413, 386.3137, 568.7174, 631.2826, 701.955, 884.3587, 955.0311, 1017.5963]

jira1: Martin Jira, ´closed´ temperament (2000)
[94.135, 196.09, 296.09, 392.18, 498.045, 594.135, 698.045, 794.135, 894.135, 996.09, 1094.135]

jira2: Martin Jira, ´open´ temperament (2000)
[88.27, 196.09, 294.135, 392.18, 498.045, 592.18, 698.045, 790.225, 894.135, 996.09, 1094.135]

jobin-bach: Emile Jobin, WTC temperament after Bach's signet
[86.8021, 193.1569, 292.4236, 386.3137, 498.045, 584.8471, 696.5784, 788.7571, 889.7353, 994.3786, 1082.8921]

johnson-secor_rwt: Johnson/Secor proportional-beating well-temperament with five 24/19s.
[93.603, 196.2939, 294.135, 391.116, 498.045, 591.648, 697.9429, 795.558, 893.7109, 996.09, 1089.693]

johnson_eb: Aaron Johnson, "1/4-comma tempered" equal beating C-G-D-A-E plus just thirds
[74.7411, 192.5576, 308.8388, 386.3137, 502.1137, 578.8713, 695.1525, 772.6274, 888.4274, 1006.2439, 1081.4662]

johnson_ratwell: Aaron Johnson, rational well-temperament with five 24/19's
[93.603, 195.5263, 294.135, 391.116, 498.045, 591.648, 697.7984, 795.558, 893.3289, 996.09, 1089.693]

johnson_temp: Aaron Johnson, temperament with just 5/4, 24/19 and 19/15
[89.6449, 193.1575, 293.0662, 386.3137, 497.6887, 588.5349, 696.5788, 790.7557, 889.7363, 995.3774, 1087.425]

johnston: Ben Johnston's combined otonal-utonal scale
[92.1787, 203.91, 323.3528, 386.3137, 551.3179, 590.2237, 701.955, 740.8608, 905.865, 968.8259, 1088.2687]

johnston_unt: Johnston first draft for "The Un-tempered Pianos" and "K"
[53.2729, 155.1396, 297.513, 386.3137, 470.7809, 551.3179, 701.955, 840.5277, 857.0946, 968.8259, 1088.2687]

jonsson1: Magnus Jonsson [1 3 5 7] x [1 3 5 9] cross set (2005)
[155.1396, 203.91, 386.3137, 470.7809, 590.2237, 701.955, 772.6274, 905.865, 968.8259, 1088.2687, 1172.7359]

jonsson2: Magnus Jonsson [1 3 5] x [1 3 5 7 11] cross set (2005)
[53.2729, 155.1396, 203.91, 386.3137, 470.7809, 551.3179, 701.955, 772.6274, 937.6317, 968.8259, 1088.2687]

jorgensen: Jorgensen's 5&7 temperament, mix of 7-tET and 5-tET shifted 120 cents
[51.4286, 171.4286, 291.4286, 342.8571, 514.2857, 531.4286, 685.7143, 771.4286, 857.1429, 1011.4286, 1028.5714]

jousse: Temperament of Jean Jousse (1832)
[98.2463, 196.9961, 302.1563, 394.7371, 500.2615, 596.2912, 698.9953, 800.2013, 896.3099, 1001.6259, 1094.3363]

jousse2: Jean Jousse's quasi-equal piano temperament, also Becket and Co. plan (1840)
[100.182, 199.8056, 300.2186, 400.0591, 500.6784, 600.7124, 700.1972, 800.478, 900.1945, 1000.6958, 1100.6191]

kayolonian_12: See Barnard: De Keiaanse Muziek, p. 11. (uitgebreide reeks)
[111.7313, 203.91, 315.6413, 386.3137, 498.045, 701.955, 772.6274, 813.6863, 884.3587, 996.09, 1088.2687]

keenan_mt: Dave Keenan 1/4-comma tempered version of keenan.scl with 6 7-limit tetrads
[117.1079, 193.1569, 269.2059, 386.3137, 503.4216, 579.4706, 696.5784, 813.6863, 889.7353, 965.7843, 1082.8921]

keenan_t9: Dave Keenan strange 9-limit temperament TL 19-11-98
[106.0, 212.0, 276.0, 382.0, 488.0, 600.0, 706.0, 812.0, 876.0, 982.0, 1088.0]

keesred12_5: Kees reduced 5-limit 12-note scale = Hahn reduced
[111.7313, 203.91, 315.6413, 386.3137, 498.045, 568.7174, 701.955, 813.6863, 884.3587, 1017.5963, 1088.2687]

kelber: kelber-Jacobi reconstruction of organ temperament Liebfrauenkirche Bremen (1995)
[87.8775, 195.3075, 296.0887, 390.615, 502.1494, 585.9225, 697.6537, 789.8325, 892.9612, 1000.1943, 1088.2687]

kelletat: Herbert Kelletat's Bach-tuning (1966), Ein Beitrag zur musikalischen Temperatur p. 26-27.
[90.225, 196.09, 294.135, 388.27, 498.045, 588.27, 700.0, 792.18, 892.18, 996.09, 1086.315]

kelletat1: Herbert Kelletat's Bach-tuning (1960)
[92.18, 192.18, 296.09, 386.315, 500.0, 590.225, 696.09, 794.135, 888.27, 998.045, 1088.27]

kellner: Herbert Anton Kellner's Bach tuning. 5 1/5 Pyth. comma and 7 pure fifths
[90.225, 194.526, 294.135, 389.052, 498.045, 588.27, 697.263, 792.18, 891.789, 996.09, 1091.007]

kellner_eb: Equal beating variant of kellner.scl
[90.225, 193.3096, 294.135, 387.7423, 498.045, 588.27, 695.6026, 792.18, 889.5844, 996.09, 1089.6973]

kellner_org: Kellner's original Bach tuning. C-E & C-G beat at identical rates, so B-F# slightly wider than C-G-D-A-E, 7 pure fifths
[90.225, 194.5568, 294.135, 389.1137, 498.045, 588.27, 697.2784, 792.18, 891.8352, 996.09, 1091.0686]

kellners: Kellner's temperament with 1/5 synt. comma instead of 1/5 Pyth. comma
[91.6205, 195.3075, 294.9723, 390.615, 498.3241, 589.9446, 697.6537, 793.2964, 892.9612, 996.6482, 1092.2909]

kepler1: Kepler's Monochord no.1, Harmonices Mundi (1619)
[92.1787, 203.91, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 794.1337, 905.865, 1017.5963, 1088.2687]

kepler2: Kepler's Monochord no.2
[92.1787, 203.91, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 813.6863, 905.865, 1017.5963, 1088.2687]

kepler3: Kepler's choice system, Harmonices Mundi, Liber III (1619)
[92.1787, 203.91, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 794.1337, 905.865, 1017.5963, 1109.775]

kilroy: Kilroy
[203.91, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 813.6863, 884.3587, 905.865, 996.09, 1088.2687]

kirn-stan: Kirnberger temperament improved by Charles Earl Stanhope (1806)
[93.603, 193.7561, 297.513, 386.3137, 498.045, 591.648, 701.955, 795.558, 888.9086, 996.09, 1088.2687]

kirnberger: Kirnberger's well-temperament, also called Kirnberger III, letter to Forkel 1779
[90.225, 193.1569, 294.135, 386.3137, 498.045, 590.2237, 696.5784, 792.18, 889.7353, 996.09, 1088.2687]

kirnberger1: Kirnbergersche Temperatur (1766). Also 12 Indian shrutis
[90.225, 203.91, 294.135, 386.3137, 498.045, 590.2237, 701.955, 792.18, 884.3587, 996.09, 1088.2687]

kirnberger2: Kirnberger 2: 1/2 synt. comma. "Die Kunst des reinen Satzes" (1774)
[92.1787, 203.91, 294.135, 386.3137, 498.045, 590.2237, 701.955, 794.1337, 895.0785, 996.09, 1088.2687]

kirnberger3: Kirnberger 3: 1/4 synt. comma (1744)
[92.1787, 193.1569, 294.135, 386.3137, 498.045, 590.2237, 696.5784, 794.1337, 889.7353, 996.09, 1088.2687]

kirnberger3s: Sparschuh's (2010) refined epimoric Kirnberger III variant
[90.225, 193.1903, 294.135, 386.3137, 498.045, 589.9598, 696.6034, 792.18, 889.7604, 996.09, 1088.2687]

kirnberger3v: Variant well-temperament like Kirnberger 3, Kenneth Scholz, MTO 4.4, 1998
[92.1787, 193.1235, 294.135, 386.3137, 498.045, 590.2237, 696.5533, 792.18, 889.7103, 996.09, 1088.2687]

klais: Johannes Klais, Bach temperament. Similar to Kelletat (1960)
[90.225, 196.09, 294.135, 387.2925, 498.045, 588.27, 700.0, 792.18, 892.18, 996.09, 1086.315]

klonaris: Johnny Klonaris, 19-limit harmonic scale
[104.9554, 203.91, 297.513, 386.3137, 470.7809, 551.3179, 701.955, 772.6274, 840.5277, 968.8259, 1088.2687]

konig: In 1997 observed temperament of pipes in Niederehe/Eifel by Balthaser König (1715)
[80.45, 197.654, 307.82, 388.661, 501.955, 585.533, 700.391, 782.405, 893.744, 1003.91, 1092.962]

koval: Ron Koval Variable 1.0 (2002)
[98.87, 199.4, 299.6, 398.6, 500.0, 598.73, 699.67, 799.27, 899.0, 999.87, 1098.5]

koval2: Ron Koval Variable Well 1.5
[98.265, 198.99, 299.355, 397.88, 499.845, 597.67, 699.495, 798.86, 898.485, 999.45, 1098.175]

koval3: Ron Koval Variable Well 1.9
[97.825, 198.73, 299.215, 397.33, 499.845, 597.07, 699.365, 798.58, 898.095, 999.34, 1097.705]

koval4: Ron Koval Variable Well 3.0
[96.565, 197.99, 298.755, 395.78, 499.745, 595.37, 698.995, 797.76, 896.985, 998.95, 1096.375]

koval5: Ron Koval Variable Well 5.0
[94.325, 196.67, 297.985, 393.0, 499.655, 592.33, 698.335, 796.32, 895.005, 998.32, 1093.995]

koval6: Ron Koval EBVT (2002)
[97.465, 197.99, 298.355, 395.88, 498.745, 596.07, 700.895, 799.66, 896.785, 997.85, 1098.375]

koval7: Ron Koval Variable Well 1.3
[98.53, 199.22, 299.48, 398.18, 500.0, 598.35, 699.57, 799.05, 898.7, 999.83, 1098.05]

koval8: Ron Koval Variable Well 1.7
[98.08, 198.98, 299.32, 397.62, 500.0, 597.84, 699.44, 798.76, 898.3, 999.78, 1097.45]

koval9: Ron Koval Variable Well 2.1
[97.62, 198.74, 299.16, 397.06, 500.0, 597.34, 699.3, 798.46, 897.9, 999.72, 1096.85]

krousseau2: 19-tET version of Kami Rousseau's tri-blues scale
[63.1579, 189.4737, 252.6316, 442.1053, 505.2632, 568.4211, 694.7368, 757.8947, 947.3684, 1010.5263, 1073.6842]

kurzweil_arab: Kurzweil "Empirical Arabic"
[130.0, 180.0, 250.0, 355.0, 502.0, 623.0, 706.0, 786.0, 857.0, 930.0, 1110.0]

kurzweil_ji: Kurzweil "Just with natural b7th", is Sauveur Just with 7/4
[70.6724, 203.91, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 813.6863, 884.3587, 968.8259, 1088.2687]

kurzweil_pelogh: Kurzweil "Empirical Bali/Java Harmonic Pelog"
[151.0, 164.0, 274.0, 287.0, 375.0, 483.0, 496.0, 851.0, 864.0, 973.0, 986.0]

kurzweil_pelogm: Kurzweil "Empirical Bali/Java Melodic Pelog"
[127.0, 142.0, 258.0, 277.0, 370.0, 474.0, 489.0, 824.0, 839.0, 943.0, 958.0]

kurzweil_slen: Kurzweil "Empirical Bali/Java Slendro, Siam 7"
[35.0, 172.0, 275.0, 343.0, 515.0, 515.0, 687.0, 754.0, 857.0, 995.0, 1029.0]

kurzweil_tibet: Kurzweil "Empirical Tibetian Ceremonial"
[58.0, 232.0, 310.0, 378.0, 522.0, 618.0, 725.0, 773.0, 896.0, 1019.0, 1086.0]

lambert: Lambert's temperament (1774) 1/7 Pyth. comma, 5 pure
[93.576, 197.207, 297.486, 394.414, 501.396, 591.621, 698.604, 795.531, 895.811, 999.441, 1093.018]

lang: Johannes Lang, Freiburg, organ temperament, 1/6 P and two -1/12 P
[96.09, 196.09, 301.955, 396.09, 501.955, 592.18, 698.045, 800.0, 898.045, 1000.0, 1094.135]

leftpistol: Left Pistol
[92.1787, 111.7313, 203.91, 386.3137, 498.045, 590.2237, 701.955, 813.6863, 884.3587, 905.865, 1088.2687]

legros1: Example of temperament with 3 just major thirds
[81.4256, 193.1569, 290.909, 386.3137, 498.045, 579.4706, 696.5784, 783.3806, 889.7353, 996.09, 1082.8921]

legros2: Example of temperament with 2 just major thirds
[86.8021, 193.1569, 290.909, 386.3137, 498.045, 584.8471, 696.5784, 788.7571, 889.7353, 996.09, 1082.8921]

lehman1: Bradley Lehman Bach temperament I (2005)
[99.3475, 196.7412, 299.5116, 393.4825, 501.6294, 597.3925, 698.3706, 799.5103, 895.1119, 999.6744, 1095.4375]

lehman2: Bradley Lehman Bach squiggle keyboard temperament II (2005)
[98.045, 196.09, 298.045, 392.18, 501.955, 596.09, 698.045, 798.045, 894.135, 998.045, 1094.135]

lehman3: Bradley Lehman Bach temperament III (2006)
[94.135, 196.09, 298.045, 392.18, 498.045, 596.09, 698.045, 800.0, 894.135, 1000.0, 1094.135]

lemba12: Lemba[12] in 270-et (poptimal)
[93.3333, 137.7778, 231.1111, 368.8889, 462.2222, 600.0, 693.3333, 737.7778, 831.1111, 968.8889, 1062.2222]

leusden: Organ in Gereformeerde kerk De Koningshof, Henk van Eeken, 1984, a'=415, modif. 1/4 mean
[89.7353, 193.1569, 296.5784, 386.3137, 503.4216, 586.3137, 696.5784, 793.1569, 889.7353, 1000.0, 1082.8921]

levens: Charles Levens' Monochord (1743)
[111.7313, 231.1741, 315.6413, 404.442, 498.045, 596.9996, 701.955, 813.6863, 933.1291, 996.09, 1129.3276]

levens2: Levens' Monochord, altered form
[111.7313, 231.1741, 315.6413, 404.442, 498.045, 596.9996, 701.955, 813.6863, 902.487, 996.09, 1095.0446]

lewis: H. Spencer Lewis scale based on colours (1918), 1/1=273 Hz
[104.5823, 197.5568, 291.1599, 385.0449, 483.7175, 581.606, 674.2547, 770.343, 872.9062, 962.4727, 1064.8589]

ligon: Jacky Ligon, strictly proper all prime scale, TL 08-09-2000
[115.4584, 192.5576, 289.2097, 401.3028, 464.4277, 582.5122, 701.955, 782.492, 884.3587, 987.7467, 1071.7018]

lindley-hamburg: Mark Lindley, proposed revision for organ Jakobikirche, Hamburg (1994)
[90.0295, 195.308, 294.135, 390.616, 500.1955, 590.225, 697.654, 791.007, 892.962, 998.2405, 1090.4205]

lindley-hamburg2: Mark Lindley, compromise between lindley-hamburg.scl and vogelh_hamburg.scl (1994)
[89.052, 195.308, 294.135, 390.616, 502.346, 588.0745, 697.654, 791.007, 892.962, 998.2405, 1088.27]

lindley-ortgies1: Lindley-Ortgies I Bach temperament (2006), Early Music 34/4, Nov. 2006
[96.09, 198.045, 298.045, 396.09, 500.9775, 596.09, 699.0225, 797.0675, 897.0675, 999.0225, 1096.09]

lindley-ortgies2: Lindley-Ortgies II Bach temperament (2006), Early Music 34/4, Nov. 2006
[94.135, 196.09, 296.09, 392.18, 496.09, 592.18, 698.045, 796.09, 894.135, 996.09, 1090.225]

lindley1: Mark Lindley I Bach temperament (1993)
[93.7336, 196.3882, 296.4949, 392.7763, 500.5301, 592.9899, 698.1941, 794.4773, 894.5823, 998.5125, 1092.2462]

lindley2: Mark Lindley II Average Neidhardt temperaments (1993)
[95.1125, 196.09, 297.0675, 393.1575, 499.0225, 594.135, 698.045, 796.09, 894.135, 998.045, 1094.135]

lindley_ea: Mark Lindley +J. de Boer +W. Drake (1991), for organ Grosvenor Chapel, London
[90.225, 196.09, 294.135, 392.18, 501.955, 590.225, 698.045, 792.18, 894.135, 998.045, 1090.225]

lindley_sf: Lindley (1988) suggestion nr. 2 for Stanford Fisk organ
[94.135, 196.09, 294.135, 392.18, 501.955, 592.18, 698.045, 794.135, 894.135, 998.045, 1090.225]

lindley_sf2: Lindley (1994) New Stanford neobaroque organ temperament
[92.18, 195.308, 292.18, 390.616, 502.346, 590.225, 697.654, 792.18, 892.962, 997.263, 1088.27]

linemarv12: [0, 0, 0] to [0, 0, 5]
[115.587, 231.1741, 346.7611, 384.3858, 499.9729, 615.5599, 700.0271, 815.6142, 931.2012, 968.8259, 1084.413]

locomotive: A 2.9.11.13 subgroup scale, Gene Ward Smith
[143.4979, 203.91, 347.4079, 359.4723, 551.3179, 636.6177, 648.6821, 840.5277, 852.5921, 996.09, 1056.5021]

london-baroque: Well-temperament used by London Baroque, close to Young
[90.225, 196.09, 294.135, 394.135, 498.045, 590.225, 698.045, 792.18, 894.135, 996.09, 1092.18]

london-chapel: Organ temperament, Grosvenor Chapel, London (originally). See also lindley_ea.scl
[90.225, 196.09, 296.09, 392.18, 501.955, 588.27, 698.045, 792.18, 894.135, 1000.0, 1090.225]

lorenzi: Giambattista de Lorenzi, Venetian temperament (c. 1830), Barbieri, 1986
[97.5553, 198.5334, 299.5116, 397.0669, 499.8372, 597.3925, 699.2667, 798.5327, 897.8001, 999.6744, 1097.2297]

lorenzi-m: De Lorenzi's Metrofono (monochord) tuning (1870), Barbieri 2009
[104.9554, 198.0711, 297.513, 400.1085, 500.0023, 603.0004, 695.1525, 797.779, 898.7259, 998.7271, 1095.0446]

lorina: Lorina
[62.9609, 196.1985, 266.8709, 315.6413, 498.045, 498.045, 671.3129, 764.9159, 968.8259, 968.8259, 996.09]

lublin: Johannes von Lublin (1540) interpr. by Franz Joseph Ratte, p. 255
[85.2237, 196.955, 301.09, 400.865, 505.0, 604.775, 701.955, 787.1787, 898.91, 1003.045, 1102.82]

lucktenberg: George Lucktenberg, general purpose temperament, 1/8P, SEHKS Newsletter vol.26 no.1 (2005)
[99.0225, 198.045, 300.0, 396.09, 500.9775, 597.0675, 699.0225, 798.045, 897.0675, 999.0225, 1095.1125]

lucy01and07tuned0b5s: 0A440Lucy01&07Tuned 0b5s RootKeyA = CC#DD#EFF#GG#AA#B
[68.4508, 190.9859, 313.5211, 381.9719, 504.507, 572.9578, 695.493, 818.0281, 886.4789, 1009.0141, 1077.4648]

lucy02and14tuned5b0s: 0A440Lucy02Tuned 5b0s RootKeyA = CDbDEbEFGbGAbABbB
[122.5352, 190.9859, 313.5211, 436.0563, 504.507, 627.0422, 695.493, 818.0281, 940.5633, 1009.0141, 1131.5492]

lucy03tuned4b1s: 0A440Lucy03Tuned 4b1s RootKeyA = CDbDEbEFF#GAbAB
[122.5352, 190.9859, 313.5211, 436.0563, 504.507, 627.0422, 695.493, 818.0281, 886.4789, 1009.0141, 1131.5492]

lucy04and21tuned3b2s: 0A440Lucy04Tuned 3b2s RootKeyA = CC#DEbEFF#GAbAB
[122.5352, 190.9859, 313.5211, 381.9719, 504.507, 627.0422, 695.493, 818.0281, 886.4789, 1009.0141, 1131.5492]

lucy05tuned2b3s: 0A440Lucy05Tuned 2b3s RootKeyA = CC#DEbEFF#GG#ABbB
[122.5352, 190.9859, 313.5211, 381.9719, 504.507, 627.0422, 695.493, 818.0281, 886.4789, 1009.0141, 1077.4648]

lucy06tuned1b4s: 0A440Lucy06Tuned 1b4s RootKeyA = CC#DD#EFF#GG#ABbB
[122.5352, 190.9859, 313.5211, 381.9719, 504.507, 572.9578, 695.493, 818.0281, 886.4789, 1009.0141, 1077.4648]

lucy08tuned0b6s: 0A440Lucy08Tuned 0b6s RootKeyA = CC#DD#EE#F#GG#AA#B
[68.4508, 190.9859, 313.5211, 381.9719, 504.507, 572.9578, 695.493, 763.9437, 886.4789, 1009.0141, 1077.4648]

lucy09tuned0b7s: 0A440Lucy09Tuned 0b7s RootKeyA = B#C#DD#EE#F#GG#AA#B
[68.4508, 190.9859, 259.4367, 381.9719, 504.507, 572.9578, 695.493, 763.9437, 886.4789, 1009.0141, 1077.4648]

lucy10tuned0b8s: 0A440Lucy10Tuned 0b8s RootKeyA = B#C#DD#EE#F#FxG#AA#B
[68.4508, 190.9859, 259.4367, 381.9719, 504.507, 572.9578, 695.493, 763.9437, 886.4789, 954.9297, 1077.4648]

lucy11tuned0b9s: 0A440Lucy11Tuned 0b9s RootKeyA = B#C#CxD#EE#F#FxG#AA#B
[68.4508, 190.9859, 259.4367, 381.9719, 450.4226, 572.9578, 695.493, 763.9437, 886.4789, 954.9297, 1077.4648]

lucy13Gxtuned0b11s: 0A440Lucy13Tuned 0b11s RootKeyA (resetAtoGx=-54.1) plays B#C#CxD#DxE#F#FxG#GxA#B
[68.4508, 190.9859, 259.4367, 381.9719, 450.4226, 572.9578, 641.4085, 763.9437, 886.4789, 954.9297, 1077.4648]

lucy15tuned6b0s: 0A440Lucy15Tuned 6b0s RootKeyA = CDbDEbEFGbGAbABbCb
[122.5352, 245.0703, 313.5211, 436.0563, 504.507, 627.0422, 695.493, 818.0281, 940.5633, 1009.0141, 1131.5492]

lucy16tuned7b0s: 0A440Lucy16Tuned 7b0s RootKeyA = CDbDEbFbFGbGAbABbCb
[122.5352, 245.0703, 313.5211, 436.0563, 504.507, 627.0422, 749.5774, 818.0281, 940.5633, 1009.0141, 1131.5492]

lucy18Bbbtuned9b0s: 0A440Lucy18Tuned 9b0s RootKeyA (resetAtoBbb=+54.1) plays CDbEbbEbFbFGbGAbBbbCb
[122.5352, 245.0703, 313.5211, 436.0563, 558.5914, 627.0422, 749.5774, 818.0281, 940.5633, 1009.0141, 1131.5492]

lucy19Bbbtuned10b0s: 0A440Lucy19Tuned 10b0s RootKeyA (resetAtoBbb=+54.1) plays CDbEbbEbFbFGbAbbAbBbbBbCb
[122.5352, 245.0703, 313.5211, 436.0563, 558.5914, 627.0422, 749.5774, 818.0281, 940.5633, 1063.0985, 1131.5492]

lucy20Bbbtuned11b0s: 0A440Lucy20Tuned 11b0s RootKeyA (resetAtoBbb=+54.1) plays DbbDbEbbEbFbFGbAbbAbBbbCb
[122.5352, 245.0703, 367.6055, 436.0563, 558.5914, 627.0422, 749.5774, 818.0281, 940.5633, 1063.0985, 1131.5492]

lucy22tuned4bGs: 0A440Lucy22Tuned 4bGs RootKeyA = CDbDEbEFGbGG#ABbB
[122.5352, 190.9859, 313.5211, 436.0563, 504.507, 627.0422, 695.493, 818.0281, 940.5633, 1009.0141, 1077.4648]

lucy23tuned4bDs: 0A440Lucy23Tuned 4bDs RootKeyA = CDbDD#EFGbGAbABbB
[122.5352, 190.9859, 313.5211, 436.0563, 504.507, 572.9578, 695.493, 818.0281, 940.5633, 1009.0141, 1131.5492]

lucy24tuned4bCs: 0A440Lucy24Tuned 4bCs RootKeyA = CC#DEbEFGbGAbABbB
[122.5352, 190.9859, 313.5211, 381.9719, 504.507, 627.0422, 695.493, 818.0281, 940.5633, 1009.0141, 1131.5492]

lucy25tunedAb4s: 0A440Lucy25Tuned Ab4s RootKeyA = CC#DD#EFF#GAbAA#B
[68.4508, 190.9859, 313.5211, 381.9719, 504.507, 572.9578, 695.493, 818.0281, 886.4789, 1009.0141, 1131.5492]

lucy26tunedGb4s: 0A440Lucy26Tuned Gb4s RootKeyA = CC#DD#EFGbGG#AA#B
[68.4508, 190.9859, 313.5211, 381.9719, 504.507, 572.9578, 695.493, 818.0281, 940.5633, 1009.0141, 1077.4648]

lucy27tunedEb5s: 0A440Lucy27Tuned Eb4s RootKeyA = CC#DEbEFF#GG#AA#B
[68.4508, 190.9859, 313.5211, 381.9719, 504.507, 627.0422, 695.493, 818.0281, 886.4789, 1009.0141, 1077.4648]

lucy28tunedDb4s: 0A440Lucy28Tuned 0b5s RootKeyA = CDbDD#EFF#GG#AA#B
[68.4508, 190.9859, 313.5211, 436.0563, 504.507, 572.9578, 695.493, 818.0281, 886.4789, 1009.0141, 1077.4648]

lucy29tunedBbAbGbCsDs: 0A440Lucy29TunedBbAbGbCsDs RootKeyA = CC#DD#EFGbGAbABbB
[122.5352, 190.9859, 313.5211, 381.9719, 504.507, 572.9578, 695.493, 818.0281, 940.5633, 1009.0141, 1131.5492]

lucy30tunedBbEbGbCsGs: 0A440Lucy30TunedBbEbGbCsGs RootKeyA = CC#DEbEFGbGG#ABbB
[122.5352, 190.9859, 313.5211, 381.9719, 504.507, 627.0422, 695.493, 818.0281, 940.5633, 1009.0141, 1077.4648]

lucy31tuned3b2sCsAs: 0A440Lucy31Tuned 3b2s RootKeyA = CC#DEbEFGbGAbAA#B
[68.4508, 190.9859, 313.5211, 381.9719, 504.507, 627.0422, 695.493, 818.0281, 940.5633, 1009.0141, 1131.5492]

lucy32tuned3b2sDsFs: 0A440Lucy32Tuned 3b2s RootKeyA = CDbDD#EFF#GAbABbB
[122.5352, 190.9859, 313.5211, 436.0563, 504.507, 572.9578, 695.493, 818.0281, 886.4789, 1009.0141, 1131.5492]

lucy33tuned3b2sDsGs: 0A440Lucy33Tuned 3b2s RootKeyA = CDbDD#EFGbGG#ABbB
[122.5352, 190.9859, 313.5211, 436.0563, 504.507, 572.9578, 695.493, 818.0281, 940.5633, 1009.0141, 1077.4648]

lucy34tuned3b2sDsAs: 0A440Lucy34Tuned 3b2s RootKeyA = CDbDD#EFGbGAbAA#B
[68.4508, 190.9859, 313.5211, 436.0563, 504.507, 572.9578, 695.493, 818.0281, 940.5633, 1009.0141, 1131.5492]

lucy35tuned3b2sFsGs: 0A440Lucy35Tuned 3b2s RootKeyA = CDbDEbEFF#GG#ABbB
[122.5352, 190.9859, 313.5211, 436.0563, 504.507, 627.0422, 695.493, 818.0281, 886.4789, 1009.0141, 1077.4648]

lucy36tuned3b2sFsAs: 0A440Lucy36Tuned 3b2s RootKeyA = CDbDEbEFF#GAbAA#B
[68.4508, 190.9859, 313.5211, 436.0563, 504.507, 627.0422, 695.493, 818.0281, 886.4789, 1009.0141, 1131.5492]

lucy37tuned3b2sGsAs: 0A440Lucy37Tuned 3b2s RootKeyA = CDbDEbEFGbGG#AA#B
[68.4508, 190.9859, 313.5211, 436.0563, 504.507, 627.0422, 695.493, 818.0281, 940.5633, 1009.0141, 1077.4648]

lucy38tuned2b3sDbEb: 0A440Lucy38Tuned 2b3s RootKeyA = CDbDEbEFF#GG#AA#B
[68.4508, 190.9859, 313.5211, 436.0563, 504.507, 627.0422, 695.493, 818.0281, 886.4789, 1009.0141, 1077.4648]

lucy39tuned2b3sDbGb: 0A440Lucy39Tuned 2b3s RootKeyA = CDbDD#EFGbGG#AA#B
[68.4508, 190.9859, 313.5211, 436.0563, 504.507, 572.9578, 695.493, 818.0281, 940.5633, 1009.0141, 1077.4648]

lucy40tuned2b3sDbAb: 0A440Lucy40Tuned 2b3s RootKeyA = CDbDD#EFF#GAbAA#B
[68.4508, 190.9859, 313.5211, 436.0563, 504.507, 572.9578, 695.493, 818.0281, 886.4789, 1009.0141, 1131.5492]

lucy41tuned2b3sDbBb: 0A440Lucy41Tuned 2b3s RootKeyA = CDbDD#EFF#GG#ABbB
[122.5352, 190.9859, 313.5211, 436.0563, 504.507, 572.9578, 695.493, 818.0281, 886.4789, 1009.0141, 1077.4648]

lucy42tuned2b3sEbGb: 0A440Lucy42Tuned 2b3s RootKeyA = CC#DEbEFGbGG#AA#B
[68.4508, 190.9859, 313.5211, 381.9719, 504.507, 627.0422, 695.493, 818.0281, 940.5633, 1009.0141, 1077.4648]

lucy43tuned2b3sEbAb: 0A440Lucy43Tuned 2b3s RootKeyA = CC#DEbEFF#GAbAA#B
[68.4508, 190.9859, 313.5211, 381.9719, 504.507, 627.0422, 695.493, 818.0281, 886.4789, 1009.0141, 1131.5492]

lucy44tuned2b3sGbAb: 0A440Lucy44Tuned 2b3s RootKeyA = CC#DD#EFGbGAbAA#B
[68.4508, 190.9859, 313.5211, 381.9719, 504.507, 572.9578, 695.493, 818.0281, 940.5633, 1009.0141, 1131.5492]

lucy45tuned2b3sGbBb: 0A440Lucy45Tuned 2b3s RootKeyA = CC#DD#EFGbGG#ABbB
[122.5352, 190.9859, 313.5211, 381.9719, 504.507, 572.9578, 695.493, 818.0281, 940.5633, 1009.0141, 1077.4648]

lucy46tuned2b3sAbBb: 0A440Lucy46Tuned 2b3s RootKeyA = CC#DD#EFF#GAbABbB
[122.5352, 190.9859, 313.5211, 381.9719, 504.507, 572.9578, 695.493, 818.0281, 886.4789, 1009.0141, 1131.5492]

lucy50Bbbtuned6b1sFs: 0A440Lucy50Tuned 6b1s RootKeyA (resetAtoBbb=+54.1) plays CDbDEbEFF#GAbABbCb
[122.5352, 245.0703, 313.5211, 436.0563, 504.507, 627.0422, 749.5774, 818.0281, 886.4789, 1009.0141, 1131.5492]

lucy51Bbbtuned3b3sBbEbDbBbbFsGsFx: 0A440Lucy51Tuned 3b3s RootKeyA (resetAtoBbb=+54.1) plays CDbDEbEFF#FxG#BbbBbB
[122.5352, 190.9859, 313.5211, 436.0563, 504.507, 627.0422, 695.493, 818.0281, 886.4789, 954.9297, 1077.4648]

lucy52tuned4b1sAs: 0A440Lucy52Tuned 4b1s RootKeyA = CDbDEbEFGbGAbAA#B
[68.4508, 190.9859, 313.5211, 436.0563, 504.507, 627.0422, 695.493, 818.0281, 940.5633, 1009.0141, 1131.5492]

lucy53tuned4b2sCsFCb: 0A440Lucy53Tuned 4b2s RootKeyA = CC#DEbEFF#GAbABbCb
[122.5352, 245.0703, 313.5211, 381.9719, 504.507, 627.0422, 695.493, 818.0281, 886.4789, 1009.0141, 1131.5492]

lucy55tuned3b3sCxFb: 0A440Lucy55Tuned 3b3s RootKeyA = CC#CxEbFbFF#GAbABbB
[122.5352, 190.9859, 313.5211, 381.9719, 450.4226, 627.0422, 749.5774, 818.0281, 886.4789, 1009.0141, 1131.5492]

lucy56tuned4b3sEs: 0A440Lucy56Tuned 4b3s RootKeyA = CC#DEbEE#F#GAbABbCb
[122.5352, 245.0703, 313.5211, 381.9719, 504.507, 627.0422, 695.493, 763.9437, 886.4789, 1009.0141, 1131.5492]

lucy57tuned7b0sAbbGbb: 0A440Lucy57Tuned 7b BbEbAbDbGbAbbGbb RootKeyA = CDbDEbEGbbGbAbbAbABbCb
[122.5352, 190.9859, 313.5211, 436.0563, 504.507, 627.0422, 695.493, 872.1126, 940.5633, 1063.0985, 1131.5492]

lucy58tuned5b2sEs: 0A440Lucy58Tuned 5b2s RootKeyA = CDbDEbEE#F#GAbABbCb
[122.5352, 245.0703, 313.5211, 436.0563, 504.507, 627.0422, 695.493, 763.9437, 886.4789, 1009.0141, 1131.5492]

lucy59Bbbtuned9b0sE: 0A440Lucy59Tuned 9b0s RootKeyA (resetAtoBbb=+54.1) plays CDbEbbEbEFGbAbbAbBbbBbCb
[122.5352, 245.0703, 313.5211, 436.0563, 558.5914, 627.0422, 695.493, 818.0281, 940.5633, 1063.0985, 1131.5492]

lucy60tuned3b4sEs: 0A440Lucy60Tuned 3b4s RootKeyA = CDbDEbEE#F#GG#AA#Cb
[68.4508, 245.0703, 313.5211, 436.0563, 504.507, 627.0422, 695.493, 763.9437, 886.4789, 1009.0141, 1077.4648]

lucy61Bbbtuned8b1s: 0A440Lucy61Tuned 8b1s RootKeyA (resetAtoBbb=+54.1) plays CDbEbbEbFbFGbGAbBbbCb
[122.5352, 245.0703, 313.5211, 436.0563, 558.5914, 627.0422, 749.5774, 818.0281, 886.4789, 1009.0141, 1131.5492]

lucy62tuned4b3sBbbEs: 0A440Lucy62Tuned 4b3s RootKeyA = CC#DEbEE#F#GAbABbbCb
[54.0844, 245.0703, 313.5211, 381.9719, 504.507, 627.0422, 695.493, 763.9437, 886.4789, 1009.0141, 1131.5492]

lucy63tuned5b0s: 0A440Lucy63Tuned 5b0s RootKeyA = CDbDEbEFGbGGxABbAx
[122.5352, 136.9015, 313.5211, 436.0563, 504.507, 627.0422, 695.493, 818.0281, 940.5633, 1009.0141, 1145.9156]

lucy64tuned7b0snoF: 0A440Lucy64Tuned 7b0s no F RootKeyA = CDbDEbEFbGbGAbABbCb
[122.5352, 245.0703, 313.5211, 436.0563, 504.507, 627.0422, 695.493, 749.5774, 940.5633, 1009.0141, 1131.5492]

lucy65tuned2b3s: 0A440Lucy65Tuned 2b4s RootKeyA = CC#DEbEFF#GG#ABbA#
[68.4508, 122.5352, 313.5211, 381.9719, 504.507, 627.0422, 695.493, 818.0281, 886.4789, 1009.0141, 1077.4648]

lumma5: Carl Lumma's 5-limit version of lumma7, also Fokker 12-tone just.
[111.7313, 203.91, 274.5824, 386.3137, 498.045, 590.2237, 701.955, 813.6863, 884.3587, 976.5374, 1088.2687]

lumma_12_moh-ha-ha: Rational well temperament
[93.603, 198.5584, 297.513, 402.4684, 501.423, 595.026, 698.8159, 795.558, 900.5134, 999.468, 1098.4226]

lumma_12_strangeion: 19-limit "dodekaphonic" scale
[104.9554, 192.5576, 297.513, 402.4684, 500.0186, 595.026, 699.9814, 797.5316, 902.487, 1007.4424, 1095.0446]

lumma_12p5: Well-temperament 1/5Pyth. comma C-G-D A-E-B G#-Eb
[94.917, 194.526, 294.135, 393.744, 498.045, 592.962, 697.263, 796.872, 896.481, 996.09, 1091.007]

lumma_12p6: Well-temperament 1/6Pyth. comma C-G-D-A-E-B G#-Eb
[94.135, 196.09, 294.135, 392.18, 498.045, 592.18, 698.045, 796.09, 894.135, 996.09, 1090.225]

lumma_12p7: Well-temperament 1/7Pyth. comma F-C-G-D-A-E F#-C#-G#
[96.9279, 197.2071, 297.4864, 394.4143, 501.3964, 598.3243, 698.6036, 795.5314, 895.8107, 999.4414, 1096.3693]

lumma_magic: Magic chord test, Carl Lumma, TL 24-06-99
[196.1985, 231.1741, 315.6413, 386.3137, 498.045, 582.5122, 617.4878, 813.6863, 884.3587, 968.8259, 1003.8015]

lumma_prism: Carl Lumma's 7-limit 12-tone scale, a.k.a GW Smith's Prism. TL 21-11-98
[111.7313, 196.1985, 266.8709, 386.3137, 498.045, 582.5122, 694.2435, 813.6863, 884.3587, 968.8259, 1080.5572]

lumma_prismkeen: Dave Keenan's adaptation of Prism scale to include 6:8:11, TL 17-04-99
[117.2049, 198.4364, 266.3719, 383.5769, 500.7818, 582.0132, 699.2182, 816.4231, 884.3587, 965.5901, 1082.795]

lumma_prismt: Tempered Prism scale, 6 tetrads + 4 triads within 2c of Just, TL 19-2-99
[115.587, 200.0542, 268.7988, 384.3858, 499.9729, 584.4401, 700.0271, 815.6142, 884.3587, 968.8259, 1084.413]

lumma_stelhex: 12-out-of [4 5 6 7] stellated hexany
[84.4672, 266.8709, 315.6413, 386.3137, 470.7809, 582.5122, 701.955, 813.6863, 898.1535, 968.8259, 1017.5963]

lumma_wt19: Carl Lumma, {2 3 17 19} well temperament, TL 13-09-2008
[95.5766, 195.1804, 299.4866, 393.0896, 498.045, 596.9996, 698.577, 797.5316, 891.1346, 996.09, 1095.0446]

maihingen: Tuning of the Baumeister organ in Maihingen (1737)
[85.3375, 199.0225, 305.865, 387.2925, 500.9775, 583.3825, 701.955, 781.4275, 896.09, 994.135, 1086.315]

major_clus: Chalmers' Major Mode Cluster
[92.1787, 182.4037, 203.91, 386.3137, 498.045, 590.2237, 701.955, 884.3587, 905.865, 996.09, 1088.2687]

major_wing: Chalmers' Major Wing with 7 major and 6 minor triads
[70.6724, 203.91, 315.6413, 386.3137, 498.045, 701.955, 772.6274, 813.6863, 884.3587, 1017.5963, 1088.2687]

major_wing_lesfip: Lesfip version of Chalmers' Major Wing, 7-limit, 15 cents
[75.7585, 196.9802, 310.5336, 387.5566, 501.7884, 697.5343, 774.5572, 814.4765, 888.1106, 1009.3323, 1085.0908]

makoyan: Makoyan's temperament (1999)
[93.0, 196.0, 293.0, 391.0, 500.0, 594.0, 699.0, 789.0, 891.0, 996.0, 1090.0]

malco: malcolm tempered in malcolm temperament, 94-tET tuning
[114.8936, 204.2553, 319.1489, 382.9787, 497.8723, 587.234, 702.1277, 817.0213, 880.8511, 995.7447, 1085.1064]

malcolm: Alexander Malcolm's Monochord (1721), and C major in Yamaha synths, Wilkinson: Tuning In
[111.7313, 203.91, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 813.6863, 884.3587, 996.09, 1088.2687]

malcolm2: Malcolm 2, differentially coherent
[104.9554, 203.91, 297.513, 386.3137, 498.045, 603.0004, 701.955, 795.558, 884.3587, 989.3141, 1088.2687]

malcolm_ap: Best approximations in mix of all ETs from 12-23 to Malcolm's Monochord
[114.286, 200.0, 315.789, 381.818, 500.0, 600.0, 700.0, 818.182, 884.211, 1000.0, 1085.714]

malcolme: Most equal interval permutation of Malcolm's Monochord
[111.7313, 203.91, 315.6413, 386.3137, 498.045, 609.7763, 701.955, 813.6863, 884.3587, 996.09, 1107.8213]

malcolme2: Inverse most equal interval permutation of Malcolm's Monochord
[92.1787, 203.91, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 813.6863, 884.3587, 996.09, 1088.2687]

malcolms: Symmetrical version of Malcolm's Monochord and Riley's Albion scale. Also proposed by Hindemith in Unterweisung im Tonsatz
[111.7313, 203.91, 315.6413, 386.3137, 498.045, 600.0, 701.955, 813.6863, 884.3587, 996.09, 1088.2687]

malerbi: Luigi Malerbi's well-temperament nr.1 (1794) (nr.2 = Young). Also Sievers
[90.225, 194.526, 294.135, 389.052, 498.045, 588.27, 697.263, 792.18, 891.789, 996.09, 1086.315]

malgache: tuning from Madagascar
[92.1787, 203.91, 274.5824, 386.3137, 519.5513, 590.2237, 701.955, 794.1337, 905.865, 976.5374, 1088.2687]

malgache1: tuning from Madagascar
[111.7313, 203.91, 294.135, 386.3137, 519.5513, 631.2826, 701.955, 813.6863, 905.865, 996.09, 1088.2687]

malgache2: tuning from Madagascar
[92.1787, 203.91, 315.6413, 386.3137, 519.5513, 590.2237, 701.955, 772.6274, 905.865, 1017.5963, 1088.2687]

mander: John Pike Mander's Adlington-Hall organ tuning compiled by A.Sparschuh
[78.9165, 193.1569, 294.135, 386.3137, 498.045, 581.2628, 696.5784, 777.2871, 889.7353, 996.09, 1082.8921]

marissing: Peter van Marissing, just scale, Mens en Melodie, 1979
[182.4037, 203.91, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 884.3587, 905.865, 996.09, 1088.2687]

marpurg: Marpurg, Versuch über die musikalische Temperatur (1776), p. 153
[101.955, 200.9775, 300.0, 401.955, 500.9775, 600.0, 701.955, 800.9775, 900.0, 1001.955, 1100.9775]

marpurg-1: Other temperament by Marpurg, 3 fifths 1/3 Pyth. comma flat
[98.045, 203.91, 301.955, 400.0, 498.045, 603.91, 701.955, 800.0, 898.045, 1003.91, 1101.955]

marpurg-a: Marpurg's temperament A, 1/12 and 1/6 Pyth. comma
[101.955, 200.0, 300.0, 401.955, 500.0, 601.955, 700.0, 801.955, 901.955, 1000.0, 1101.955]

marpurg-b: Marpurg's temperament B, 1/12 and 1/6 Pyth. comma
[98.045, 198.045, 298.045, 400.0, 500.0, 600.0, 698.045, 798.045, 898.045, 1000.0, 1100.0]

marpurg-c: Marpurg's temperament C, 1/12 and 1/6 Pyth. comma
[98.045, 200.0, 300.0, 400.0, 498.045, 600.0, 700.0, 800.0, 898.045, 1000.0, 1100.0]

marpurg-d: Marpurg's temperament D, 1/12 and 1/6 Pyth. comma
[98.045, 198.045, 300.0, 398.045, 498.045, 600.0, 698.045, 798.045, 900.0, 998.045, 1098.045]

marpurg-e: Marpurg's temperament E, 1/12 and 1/6 Pyth. comma
[100.0, 201.955, 301.955, 401.955, 501.955, 601.955, 700.0, 800.0, 900.0, 1000.0, 1100.0]

marpurg-g: Marpurg's temperament G, 1/5 Pyth. comma
[99.609, 199.218, 298.827, 398.436, 498.045, 602.346, 701.955, 801.564, 901.173, 1000.782, 1100.391]

marpurg-t1: Marpurg's temperament nr.1, almost equal to Kirnberger 1 (1766)
[90.225, 203.91, 294.135, 386.315, 498.045, 590.225, 701.955, 792.18, 884.36, 996.09, 1088.27]

marpurg-t11: Marpurg's temperament nr.11, 6 tempered fifths
[105.865, 203.91, 301.955, 407.82, 498.045, 607.82, 701.955, 803.91, 905.865, 1000.0, 1109.775]

marpurg-t12: Marpurg's temperament nr.12, 4 tempered fifths
[111.7313, 205.865, 296.0887, 405.8663, 499.9987, 609.7763, 703.91, 813.6863, 907.82, 998.045, 1107.8213]

marpurg-t1a: Marpurg's temperament no. 1, 1/12 and 1/6 Pyth. comma
[101.955, 201.955, 303.91, 400.0, 501.955, 601.955, 703.91, 800.0, 901.955, 1001.955, 1103.91]

marpurg-t2: Marpurg's temperament nr.2, 2 tempered fifths, Neue Methode (1790)
[109.775, 203.91, 313.685, 407.82, 498.045, 607.82, 701.955, 811.73, 905.865, 1015.64, 1105.865]

marpurg-t2a: Marpurg's temperament no. 2, 1/12 and 5/24 Pyth. comma
[96.09, 194.135, 297.0675, 400.0, 496.09, 594.135, 697.0675, 800.0, 896.09, 994.135, 1097.0675]

marpurg-t3: Marpurg's temperament nr.3, 2 tempered fifths
[96.09, 203.91, 300.0, 407.82, 498.045, 594.135, 701.955, 798.045, 905.865, 996.09, 1092.18]

marpurg-t4: Marpurg's temperament nr.4, 2 tempered fifths
[98.045, 203.91, 294.135, 407.82, 498.045, 596.09, 701.955, 800.0, 905.865, 996.09, 1094.135]

marpurg-t5: Marpurg's temperament nr.5, 2 tempered fifths
[103.91, 203.91, 307.82, 407.82, 498.045, 601.955, 701.955, 805.865, 905.865, 1009.775, 1100.0]

marpurg-t7: Marpurg's temperament nr.7, 3 tempered fifths
[98.045, 196.09, 294.135, 400.0, 498.045, 596.09, 694.135, 800.0, 898.045, 996.09, 1094.135]

marpurg-t8: Marpurg's temperament nr.8, 4 tempered fifths
[101.955, 198.045, 300.0, 401.955, 498.045, 600.0, 696.09, 798.045, 900.0, 1001.955, 1098.045]

marpurg-t9: Marpurg's temperament nr.9, 4 tempered fifths
[101.955, 203.91, 305.865, 407.82, 503.91, 605.865, 701.955, 803.91, 905.865, 1007.82, 1109.775]

marpurg1: Marpurg's Monochord no.1 (1776)
[70.6724, 203.91, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 772.6274, 884.3587, 1017.5963, 1088.2687]

marpurg1756: Marpurg (1756). Source: Jos De Bie.
[84.3, 193.2, 293.8, 386.3, 503.4, 579.5, 696.6, 789.0, 889.7, 998.6, 1082.9]

marpurg3: Marpurg 3
[70.6724, 203.91, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 772.6274, 905.865, 996.09, 1088.2687]

marsh: John Marsh's meantone temperament (1809)
[89.5, 197.0, 304.5, 394.0, 501.5, 591.0, 698.5, 788.0, 895.5, 1003.0, 1092.5]

marvel12: Marvel[12] hobbit in 197-tET
[115.736, 201.0152, 316.7513, 383.7563, 499.4924, 584.7716, 700.5076, 816.2437, 931.9797, 968.5279, 1084.264]

marveldene: BlueJI in 197-tET (= Duodene, etc, in 197-tET)
[115.736, 201.0152, 316.7513, 383.7563, 499.4924, 584.7716, 700.5076, 816.2437, 883.2487, 1017.2589, 1084.264]

maunder1: Richard Maunder Bach temperament I (2005), also Daniel Jencka
[98.045, 196.09, 299.3483, 392.18, 501.955, 596.09, 698.045, 798.6967, 894.135, 1000.0, 1094.135]

maunder2: Richard Maunder Bach temperament II (2005)
[98.045, 196.09, 300.0, 392.18, 501.955, 596.09, 698.045, 799.0225, 894.135, 1000.9775, 1094.135]

max1: 31 intervals 26 triads 6 tetrads 2 pentads smallest step 49/48
[231.1741, 266.8709, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 933.1291, 968.8259]

max3: 31 intervals 26 triads 6 tetrads 2 pentads smallest step 50/49
[231.1741, 266.8709, 315.6413, 386.3137, 498.045, 582.5122, 617.4878, 701.955, 813.6863, 884.3587, 933.1291]

max5: 31 intervals 26 triads 6 tetrads two pentads smallest step 50/49
[231.1741, 266.8709, 315.6413, 386.3137, 498.045, 582.5122, 617.4878, 701.955, 884.3587, 933.1291, 968.8259]

mcclain: McClain's 12-tone scale, see page 119 of The Myth of Invariance
[92.1787, 203.91, 274.5824, 386.3137, 407.82, 590.2237, 701.955, 772.6274, 905.865, 1088.2687, 1158.9411]

mclaren_rath1: McLaren Rat H1
[111.7313, 231.1741, 427.3726, 462.3482, 498.045, 609.7763, 648.6821, 688.4823, 729.2191, 1095.0446, 1146.7271]

mclaren_rath2: McLaren Rat H2
[111.7313, 231.1741, 427.3726, 462.3482, 498.045, 648.6821, 688.4823, 729.2191, 902.487, 948.656, 996.09]

mean10: 3/10-comma meantone scale
[68.5218, 191.0062, 313.4907, 382.0125, 504.4969, 573.0187, 695.5031, 764.0249, 886.5093, 1008.9938, 1077.5156]

mean11: 3/11-comma meantone scale. A.J. Ellis no. 10
[72.6275, 192.1793, 311.731, 384.3586, 503.9103, 576.5379, 696.0897, 768.7172, 888.269, 1007.8207, 1080.4482]

mean13: 3/13-comma meantone scale
[78.9441, 193.984, 309.024, 387.968, 503.008, 581.9521, 696.992, 775.9361, 890.976, 1006.016, 1084.96]

mean14: 3/14-comma meantone scale (Giordano Riccati, 1762)
[81.4256, 194.693, 307.9605, 389.386, 502.6535, 584.0791, 697.3465, 778.7721, 892.0395, 1005.307, 1086.7325]

mean14a: fifth of sqrt(5/2)-1 octave "recursive" meantone, Paul Hahn
[81.5662, 194.7332, 307.9002, 389.4664, 502.6334, 584.1996, 697.3666, 778.9328, 892.0998, 1005.2668, 1086.833]

mean16: 3/16-comma meantone scale
[85.458, 195.8451, 306.2323, 391.6903, 502.0774, 587.5354, 697.9226, 783.3806, 893.7677, 1004.1549, 1089.6129]

mean17: 4/17-comma meantone scale, least squares error of 5/4 and 3/2
[78.2629, 193.7894, 309.3159, 387.5788, 503.1053, 581.3682, 696.8947, 775.1576, 890.6841, 1006.2106, 1084.4735]

mean18: 5/18-comma meantone scale (Smith). 3/2 and 5/3 eq. beat. A.J. Ellis no. 9
[71.8672, 191.9621, 312.0569, 383.9241, 504.019, 575.8862, 695.981, 767.8483, 887.9431, 1008.0379, 1079.9052]

mean19: 5/19-comma meantone scale, fifths beats three times third. A.J. Ellis no. 11
[74.0682, 192.5909, 311.1137, 385.1818, 503.7045, 577.7727, 696.2954, 770.3636, 888.8863, 1007.4091, 1081.4772]

mean19r: Approximate 5/19-comma meantone with 19/17 tone, Petr Parizek (2002)
[73.9516, 192.5576, 311.1636, 385.1152, 503.7212, 577.6728, 696.2788, 770.2304, 888.8364, 1007.4424, 1081.394]

mean19t: Approximate 5/19-comma meantone with three 7/6 minor thirds
[74.2329, 192.638, 311.043, 385.276, 503.681, 577.9139, 696.319, 770.5519, 888.957, 1007.362, 1081.5949]

mean23: 5/23-comma meantone scale, A.J. Ellis no. 4
[80.958, 194.5594, 308.1608, 389.1189, 502.7203, 583.6783, 697.2797, 778.2378, 891.8392, 1005.4406, 1086.3986]

mean23six: 6/23-comma meantone scale
[74.4126, 192.6893, 310.966, 385.3787, 503.6553, 578.068, 696.3447, 770.7573, 889.034, 1007.3107, 1081.7233]

mean25: 7/25-comma meantone scale, least square weights 3/2:0 5/4:1 6/5:1
[71.5327, 191.8665, 312.2003, 383.733, 504.0668, 575.5994, 695.9332, 767.4659, 887.7997, 1008.1335, 1079.6662]

mean26: 7/26-comma meantone scale (Woolhouse 1835). Almost equal to meaneb742.scl
[73.1539, 192.3297, 311.5055, 384.6594, 503.8351, 576.9891, 696.1649, 769.3188, 888.4945, 1007.6703, 1080.8242]

mean27: 7/27-comma meantone scale, least square weights 3/2:2 5/4:1 6/5:1
[74.6551, 192.7586, 310.8621, 385.5172, 503.6207, 578.2758, 696.3793, 771.0344, 889.1379, 1007.2414, 1081.8965]

mean29: 7/29-comma meantone scale, least square weights 3/2:4 5/4:1 6/5:1
[77.3468, 193.5277, 309.7085, 387.0553, 503.2362, 580.583, 696.7638, 774.1106, 890.2915, 1006.4723, 1083.8191]

mean2nine: 2/9-comma meantone scale, Lemme Rossi, Sistema musico (1666)
[80.231, 194.352, 274.5824, 388.703, 502.824, 583.055, 697.176, 777.407, 891.528, 1005.648, 1085.879]

mean2sev: 2/7-comma meantone scale. Zarlino's temperament (1558). See also meaneb371
[70.6724, 191.6207, 312.569, 383.2414, 504.1896, 574.8621, 695.8103, 766.4828, 887.431, 1008.3793, 1079.0517]

mean2sev10: 2/17-comma meantone scale
[95.9739, 198.8497, 301.7255, 397.6994, 500.5752, 596.5491, 699.4248, 795.3988, 898.2745, 1001.1503, 1097.1243]

mean2seveb: "2/7-comma" meantone with equal beating fifths. A.J. Ellis no. 8
[81.6962, 193.6568, 307.3106, 388.4016, 502.6392, 584.1239, 695.8104, 777.7903, 890.1185, 1004.1218, 1085.4486]

mean2sevr: Rational approximation to 2/7-comma meantone, 1/1 = 262.9333
[70.6724, 191.5973, 312.5659, 383.2383, 504.1795, 574.8519, 695.7987, 766.4711, 887.4287, 1008.3536, 1079.0261]

mean4nine: 4/9-comma meantone scale
[46.7766, 184.7933, 322.81, 369.5866, 507.6033, 554.3799, 692.3967, 739.1732, 877.1899, 1015.2067, 1061.9832]

meanbrat32: Beating of 5/4 = 1.5 times 3/2 same. Almost 1/3-comma
[65.1252, 190.0358, 314.9463, 380.0716, 504.9821, 570.1073, 695.0179, 760.1431, 885.0537, 1009.9642, 1075.0895]

meanbrat32a: Beating of 5/4 = 1.5 times 3/2 opposite. Almost 3/16 Pyth. comma
[82.9482, 195.1281, 307.3079, 390.2561, 502.436, 585.3841, 697.564, 780.5122, 892.6921, 1004.8719, 1087.8201]

meanbratm32: Beating of 6/5 = 1.5 times 3/2 same. Almost 4/15-comma
[73.5366, 192.439, 311.3415, 384.8781, 503.7805, 577.3171, 696.2195, 769.7561, 888.6585, 1007.561, 1081.0976]

meaneb1071: Equal beating 7/4 = 3/2 same.
[76.589, 193.311, 269.901, 386.623, 503.344, 579.934, 696.656, 773.245, 889.967, 966.556, 1083.278]

meaneb1071a: Equal beating 7/4 = 3/2 opposite.
[79.635, 194.181, 273.816, 388.363, 502.909, 582.544, 697.091, 776.725, 891.272, 970.906, 1085.453]

meaneb341: Equal beating 6/5 = 5/4 same. Almost 4/15 Pyth. comma
[70.106, 191.459, 312.812, 382.918, 504.271, 574.377, 695.729, 765.835, 887.188, 1008.541, 1078.647]

meaneb371: Equal beating 6/5 = 3/2 same. Practically 2/7-comma (Zarlino)
[70.667, 191.6191, 312.5713, 383.2383, 504.1904, 574.8574, 695.8096, 766.4765, 887.4287, 1008.3809, 1079.0478]

meaneb371a: Equal beating 6/5 = 3/2 opposite. Almost 2/5-comma
[53.512, 186.718, 319.924, 373.435, 506.641, 560.153, 693.359, 826.565, 880.076, 1013.282, 1066.794]

meaneb381: Equal beating 6/5 = 8/5 same. Almost 1/7-comma
[92.146, 197.756, 303.366, 395.512, 501.122, 593.268, 698.878, 804.488, 896.634, 1002.244, 1094.39]

meaneb451: Equal beating 5/4 = 4/3 same, 5/24 comma meantone. A.J. Ellis no. 6
[82.323, 194.9494, 307.5759, 389.8989, 502.5253, 584.8483, 697.4747, 779.7977, 892.4242, 1005.0506, 1087.3736]

meaneb471: Equal beating 5/4 = 3/2 same. Almost 5/17-comma. Erv Wilson's 'metameantone'
[69.4131, 191.2609, 313.1087, 382.5217, 504.3696, 573.7826, 695.6304, 765.0435, 886.8913, 1008.7391, 1078.1522]

meaneb471a: Equal beating 5/4 = 3/2 opposite. Almost 1/5 Pyth. Gottfried Keller (1707)
[80.9488, 194.5568, 308.1648, 389.1136, 502.7216, 583.6704, 697.2784, 778.2272, 891.8352, 1005.4432, 1086.392]

meaneb471b: 21/109-comma meantone with 9/7 major thirds, almost equal beating 5/4 and 3/2
[69.3014, 191.229, 313.1565, 382.4579, 504.3855, 573.6869, 695.6145, 764.9159, 886.8435, 1008.771, 1078.0724]

meaneb472: Beating of 5/4 = twice 3/2 same. Almost 5/14-comma
[59.909, 188.5454, 317.1818, 377.0909, 505.7273, 565.6363, 694.2727, 754.1817, 882.8182, 1011.4546, 1071.3636]

meaneb472a: Beating of 5/4 = twice 3/2 opposite. Almost 3/17-comma
[84.717, 195.633, 306.55, 391.267, 502.183, 586.9, 697.817, 782.533, 893.45, 1004.367, 1089.083]

meaneb591: Equal beating 4/3 = 5/3 same.
[74.071, 192.592, 311.112, 385.183, 503.704, 577.775, 696.296, 814.817, 888.888, 1007.408, 1081.479]

meaneb732: Beating of 3/2 = twice 6/5 same. Almost 4/13-comma
[67.3587, 190.6739, 313.9891, 381.3478, 504.663, 572.0217, 695.337, 762.6956, 886.0109, 1009.3261, 1076.6848]

meaneb732a: Beating of 3/2 = twice 6/5 opposite. Almost 1/3 Pyth. comma
[58.956, 188.273, 317.59, 376.546, 505.863, 564.819, 694.137, 753.092, 882.41, 1011.727, 1070.683]

meaneb742: Beating of 3/2 = twice 5/4 same.
[73.001, 192.286, 311.571, 384.572, 503.857, 576.858, 696.143, 769.144, 888.429, 1007.714, 1080.715]

meaneb742a: Beating of 3/2 = twice 5/4 opposite. Almost 3/13-comma, 3/14 Pyth. comma
[78.67, 193.906, 309.141, 387.812, 503.047, 581.717, 696.953, 775.623, 890.859, 1006.094, 1084.765]

meaneb781: Equal beating 3/2 = 8/5 same.
[79.272, 194.078, 308.883, 388.156, 502.961, 582.233, 697.039, 811.844, 891.117, 1005.922, 1085.194]

meaneb891: Equal beating 8/5 = 5/3 same. Almost 5/18-comma
[72.044, 192.013, 311.981, 384.025, 503.994, 576.038, 696.006, 815.975, 888.019, 1007.987, 1080.032]

meaneight: 1/8-comma meantone scale
[94.867, 198.5334, 302.1999, 397.0669, 500.7333, 595.6003, 699.2667, 794.1337, 897.8001, 1001.4666, 1096.3336]

meaneightp: 1/8 Pyth. comma meantone scale
[93.1575, 198.045, 302.9325, 396.09, 500.9775, 594.135, 699.0225, 792.18, 897.0675, 1001.955, 1095.1125]

meanfifth: 1/5-comma meantone scale (Verheijen)
[83.5762, 195.3075, 307.0388, 390.615, 502.3463, 585.9225, 697.6537, 781.2299, 892.9612, 1004.6925, 1088.2687]

meanfifth2: 1/5-comma meantone by John Holden (1770)
[111.7313, 195.3075, 307.0388, 390.615, 502.3463, 585.9225, 697.6537, 809.385, 892.9612, 1004.6925, 1088.2687]

meanfifth_french: Homogeneous French temperament, 1/5-comma, C. di Veroli
[87.8775, 195.3075, 291.7875, 390.615, 498.045, 585.9225, 697.6537, 789.8325, 892.9612, 994.9162, 1088.2687]

meanfiftheb: "1/5-comma" meantone with equal beating fifths
[91.3442, 196.7357, 303.3729, 394.2435, 501.2638, 592.4427, 697.654, 789.2195, 894.8522, 1001.7189, 1092.7742]

meangolden: Meantone scale with Blackwood's R = phi, and diat./chrom. semitone = phi, Kornerup. Almost 4/15-comma
[73.5013, 192.4289, 311.3566, 384.8579, 503.7855, 577.2868, 696.2145, 769.7158, 888.6434, 1007.5711, 1081.0724]

meanhalf: 1/2-comma meantone scale
[38.413, 182.4037, 326.3944, 364.8074, 508.7981, 547.2111, 691.2019, 729.6148, 873.6056, 1017.5963, 1056.0093]

meanhar2: 1/9-Harrison's comma meantone scale
[74.2329, 192.638, 266.8709, 385.276, 503.681, 577.9139, 696.319, 770.5519, 888.957, 963.1899, 1081.5949]

meanhar3: 1/11-Harrison's comma meantone scale
[81.406, 194.6874, 276.0935, 389.3749, 470.7809, 584.0623, 697.3437, 778.7497, 892.0312, 973.4372, 1086.7186]

meanharris: 1/10-Harrison's comma meantone scale
[78.1781, 193.7652, 271.9433, 387.5304, 503.1174, 581.2955, 696.8826, 775.0607, 890.6478, 968.8259, 1084.4129]

meanhskl: Half septimal kleisma meantone
[86.6947, 196.1985, 305.7023, 392.397, 501.9008, 588.5954, 698.0992, 784.7939, 894.2977, 1003.8015, 1090.4962]

meanmalc: Meantone approximation to Malcolm's Monochord, 3/16 Pyth. comma
[112.3205, 195.0718, 307.3923, 390.1436, 502.4641, 585.2154, 697.5359, 809.8564, 892.6077, 1004.9282, 1087.6795]

meannine: 1/9-comma meantone scale, Jean-Baptiste Romieu
[96.9579, 199.1308, 301.3038, 398.2616, 500.4346, 597.3925, 699.5654, 796.5233, 898.6962, 1000.8692, 1097.8271]

meannkleis: 1/5 kleisma tempered meantone scale
[102.3348, 200.667, 303.0019, 401.3338, 503.669, 602.0006, 700.3335, 802.6684, 901.0006, 1003.3355, 1101.6677]

meanpi: Pi-based meantone with Harrison's major third by Erv Wilson
[88.733, 204.507, 293.24, 381.972, 497.747, 586.479, 702.254, 790.986, 879.718, 995.493, 1084.225]

meanpi2: Pi-based meantone by Erv Wilson analogous to 22-tET
[163.756, 218.216, 381.972, 436.432, 600.188, 654.648, 709.108, 872.864, 927.324, 1091.08, 1145.54]

meanpkleis: 1/5 kleisma positive temperament
[82.1177, 207.1529, 289.2706, 371.3884, 496.4235, 578.5413, 703.5765, 785.6942, 910.7294, 992.8471, 1074.9648]

meanquar: 1/4-comma meantone scale. Pietro Aaron's temp. (1523). 6/5 beats twice 3/2
[76.049, 193.1569, 310.2647, 386.3137, 503.4216, 579.4706, 696.5784, 772.6274, 889.7353, 1006.8431, 1082.8921]

meanquareb: Variation on 1/4-comma meantone with equal beating fifths
[85.7203, 194.9396, 305.6719, 390.8367, 502.0666, 587.5928, 696.5783, 782.5588, 892.0913, 1003.1216, 1088.5029]

meanquarm23: 1/4-comma meantone approximation with minimal order 23 beatings
[76.9564, 192.5576, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 772.6274, 884.3587, 1007.4424, 1083.2434]

meanquarr: Rational approximation to 1/4-comma meantone, Kenneth Scholz, MTO 4.4, 1998
[76.024, 193.1235, 310.2897, 386.3137, 503.4467, 579.4372, 696.5533, 772.6274, 889.7103, 1006.8765, 1082.867]

meanquarw2: 1/4-comma meantone with 1/2 wolf, used in England in 19th c. (Ellis)
[76.049, 193.1569, 289.7353, 386.3137, 503.4216, 579.4706, 696.5784, 772.6274, 889.7353, 1006.8431, 1082.8921]

meanquarw3: 1/4-comma meantone with 3 superpythagorean fifths, C. di Veroli & S. Leidemann (1985), also called Rainbow
[76.049, 193.1569, 296.5784, 386.3137, 503.4216, 579.4706, 696.5784, 786.3137, 889.7353, 1006.8431, 1082.8921]

meanreverse: Reverse meantone 1/4 82/81-comma tempered
[150.8592, 214.5312, 278.2032, 429.0624, 492.7344, 643.5936, 707.2656, 858.1248, 921.7968, 985.4688, 1136.328]

meansabat: 1/9-schisma meantone scale of Eduard Sábat-Garibaldi
[112.1655, 203.4758, 315.6413, 406.9517, 498.2621, 610.4275, 701.7379, 813.9034, 905.2138, 1017.3792, 1108.6896]

meanschis: 1/8-schisma temperament, Helmholtz
[91.4461, 203.4216, 294.8676, 386.3137, 498.2892, 589.7353, 701.7108, 793.1569, 884.6029, 996.5784, 1088.0245]

meanschis7: 1/7-schisma linear temperament
[91.6205, 203.3518, 294.9723, 386.5928, 498.3241, 589.9446, 701.6759, 793.2964, 884.9169, 996.6482, 1088.2687]

meansept: Meantone scale with septimal diminished fifth
[79.5976, 194.1707, 308.7439, 388.3415, 502.9146, 582.5122, 697.0854, 776.6829, 891.2561, 1005.8293, 1085.4268]

meansev: 1/7-comma meantone scale, Jean-Baptiste Romieu (1755)
[92.1787, 197.7654, 303.352, 395.5307, 501.1173, 593.296, 698.8827, 791.0614, 896.648, 1002.2346, 1094.4134]

meanseveb: "1/7-comma" meantone with equal beating fifths
[97.7518, 198.7869, 300.7405, 398.1304, 500.3454, 597.971, 698.883, 796.8036, 898.0035, 1000.1138, 1097.6449]

meansixth: 1/6-comma meantone scale (tritonic temperament of Salinas)
[88.5943, 196.7412, 304.8881, 393.4825, 501.6294, 590.2237, 698.3706, 786.965, 895.1119, 1003.2588, 1091.8531]

meansixtheb: "1/6-comma" meantone with equal beating fifths
[95.0845, 197.9324, 301.838, 396.5117, 500.7282, 595.6694, 698.3709, 793.6471, 896.6909, 1000.7829, 1095.6169]

meansixthm: modified 1/6-comma meantone scale, wolf spread over 2 fifths
[88.5943, 196.7412, 304.8881, 393.4825, 501.6294, 590.2237, 698.3706, 796.7412, 895.1119, 1003.2588, 1091.8531]

meansixthm2: modified 1/6-comma meantone scale, wolf spread over 4 fifths
[93.4827, 196.7412, 295.1119, 393.4825, 501.6294, 590.2237, 698.3706, 796.7417, 895.1119, 998.3706, 1091.8531]

meansixthpm: modified 1/6P-comma temperament, French 18th century
[86.315, 196.09, 292.18, 392.18, 498.045, 588.27, 698.045, 788.27, 894.135, 996.09, 1090.225]

meanten: 1/10-comma meantone scale
[98.6306, 199.6087, 300.5869, 399.2175, 500.1956, 598.8262, 699.8044, 798.435, 899.4131, 1000.3913, 1099.0219]

meanthird: 1/3-comma meantone scale (Salinas)
[63.5037, 189.5725, 315.6413, 379.1449, 505.2138, 568.7174, 694.7862, 758.2899, 884.3587, 1010.4275, 1073.9312]

meanthirdeb: "1/3-comma" meantone with equal beating fifths
[76.318, 191.9456, 309.4922, 385.1508, 503.4021, 579.4895, 694.7863, 771.4141, 887.4857, 1005.4541, 1081.3693]

meanthirdp: 1/3-P comma meantone scale
[58.945, 188.27, 317.595, 376.54, 505.865, 564.81, 694.135, 753.08, 882.405, 1011.73, 1070.675]

meanvar1: Variable meantone 1: C-G-D-A-E 1/4, others 1/6
[81.4256, 193.1569, 304.8881, 386.3137, 501.6294, 583.0549, 696.5784, 779.7962, 889.7353, 1003.2588, 1084.6843]

meanvar2: Variable meantone 2: C..E 1/4, 1/5-1/6-1/7-1/8 outward both directions
[81.2207, 193.1569, 305.093, 386.3137, 502.3463, 582.3381, 696.5784, 780.4875, 889.7353, 1003.9756, 1083.9675]

meanvar3: Variable meantone 3: C..E 1/4, 1/6 next, then Pyth.
[88.5943, 193.1569, 297.7194, 386.3137, 501.6294, 586.6393, 696.5784, 790.5493, 889.7353, 999.6744, 1084.6843]

meanvar4: Variable meantone 4: naturals 1/4-comma, accidentals Pyth.
[86.8021, 193.1569, 299.5116, 386.3137, 503.4216, 584.8471, 696.5784, 788.7571, 889.7353, 1001.4666, 1082.8921]

meister-p12: Temperament with 1/6 and 1/12 P comma, W.Th. Meister, p. 117
[90.225, 196.09, 301.955, 392.18, 501.955, 590.225, 698.045, 790.225, 894.135, 1001.955, 1090.225]

meister-s4: Temperament with 1/4 comma, W.Th. Meister, p. 120
[85.8253, 193.1569, 294.135, 386.3137, 498.045, 579.4706, 696.5784, 792.18, 889.7353, 996.09, 1082.8921]

meister-s5: Temperament with 1/5 comma, W.Th. Meister, p. 121
[94.1344, 195.3075, 296.4806, 390.615, 498.8269, 592.9612, 697.6537, 795.3075, 892.9612, 997.6537, 1091.7881]

meister-synt: Halved syntonic comma's, Wolfgang Theodor Meister, Die Orgelstimmung in Süddeutschland, 1991, p. 117
[70.6724, 193.1569, 315.6413, 386.3137, 498.045, 579.4706, 701.955, 772.6274, 884.3587, 1006.8431, 1088.2687]

meister-t: A temperament, W.Th. Meister, p. 35-36
[111.7313, 198.5334, 315.6413, 391.6903, 498.045, 609.7763, 701.955, 813.6863, 895.1119, 996.09, 1088.2687]

mercadier: Mercadier's well-temperament (1777), 1/12 and 1/6 Pyth. comma
[94.135, 196.09, 296.09, 392.18, 500.0, 594.135, 698.045, 794.135, 894.135, 998.045, 1094.135]

mercadier2: Jean-Baptiste Mercadier de Belesta (1776), 2/13 and 1/13 Pyth. comma
[93.8342, 196.6915, 295.9396, 393.3831, 499.8496, 593.6838, 698.3458, 793.9846, 895.0373, 997.8946, 1093.5335]

merrick: A. Merrick's melodically tuned equal temperament (1811)
[108.9635, 209.5457, 310.1102, 401.5287, 500.3548, 607.6232, 708.8938, 805.3962, 895.9389, 1006.8958, 1099.1229]

mersen_l1: Mersenne lute 1
[111.7313, 182.4037, 315.6413, 386.3137, 498.045, 609.7763, 701.955, 813.6863, 884.3587, 1017.5963, 1088.2687]

mersen_l2: Mersenne lute 2
[111.7313, 203.91, 315.6413, 386.3137, 498.045, 609.7763, 701.955, 813.6863, 884.3587, 1017.5963, 1088.2687]

mersen_s1: Mersenne spinet 1, Traité de l'orgue, 1635, p. 43
[111.7313, 182.4037, 315.6413, 386.3137, 498.045, 609.7763, 701.955, 813.6863, 884.3587, 996.09, 1088.2687]

mersen_s2: Mersenne spinet 2, Traité de l'orgue, 1635, p. 42
[70.6724, 203.91, 274.5824, 386.3137, 498.045, 568.7174, 701.955, 772.6274, 884.3587, 996.09, 1088.2687]

mersenmt1: Mersenne's Improved Meantone 1
[76.049, 193.1569, 299.5116, 386.3137, 503.4216, 579.4706, 696.5784, 772.6274, 889.7353, 1001.4666, 1082.8921]

mersenmt2: Mersenne's Improved Meantone 2
[76.049, 193.1569, 288.7584, 386.3137, 503.4216, 579.4706, 696.5784, 772.6274, 889.7353, 996.09, 1082.8921]

mersenne-t: Marin Mersenne, equal temp with just 5/4 (1636)
[96.5784, 193.1569, 289.7353, 386.3137, 488.0245, 589.7353, 691.4461, 793.1569, 894.8676, 996.5784, 1098.2892]

met24c-cs12-archytan-maqam_cup: Constant Structure, tempered subdivision of Archytas Chromatic
[68.5547, 207.4219, 288.8672, 357.4219, 496.2891, 564.8438, 703.7109, 772.2656, 911.1328, 992.5781, 1061.1328]

mgr12: Modular Golomb Ruler of 12 segments, length 133
[18.0451, 54.1353, 216.5413, 261.6541, 360.9023, 387.9699, 496.2406, 613.5338, 676.6917, 685.7143, 766.9173]

miller7: Herman Miller, 7-limit JI. mode of parizek_ji1
[84.4672, 203.91, 315.6413, 400.1085, 519.5513, 582.5122, 701.955, 786.4222, 898.1535, 1017.5963, 1102.0635]

miller_12: Herman Miller, scale with appr. to three 7/4 and one 11/8, TL 19-11-99
[76.0, 188.0, 312.0, 388.0, 500.0, 576.0, 700.0, 812.0, 888.0, 964.0, 1076.0]

miller_12r: Herman Miller, "Starling" scale rational version
[70.6724, 182.4037, 315.6413, 386.3137, 498.045, 568.7174, 701.955, 813.6863, 884.3587, 955.0311, 1066.7624]

miller_ar1: Herman Miller, "Arrow I" well-temperament
[93.744, 196.872, 294.135, 391.398, 498.045, 591.789, 698.436, 795.699, 892.962, 996.09, 1089.834]

miller_ar2: Herman Miller, "Arrow II" well-temperament
[93.744, 196.872, 295.308, 392.571, 499.218, 591.789, 698.436, 795.699, 894.135, 997.263, 1091.007]

miller_b1: Herman Miller, "Butterfly I" well-temperament
[94.917, 195.699, 296.481, 392.571, 498.045, 592.962, 698.436, 794.526, 895.308, 996.09, 1091.007]

miller_b2: Herman Miller, "Butterfly II" well-temperament
[96.09, 196.872, 297.654, 392.571, 499.218, 594.135, 700.782, 795.699, 896.481, 997.263, 1093.353]

miller_bug: Herman Miller, "Bug I" well-temperament
[92.571, 194.526, 296.481, 389.052, 498.045, 592.962, 698.436, 794.526, 890.616, 996.09, 1091.007]

miller_lazy: Herman Miller, JI tuning for Lazy Summer Afternoon
[182.4037, 203.91, 266.8709, 386.3137, 470.7809, 498.045, 701.955, 884.3587, 968.8259, 996.09, 1088.2687]

miller_reflections: Herman Miller, 7-limit (slightly tempered) "reflections" scale
[62.9609, 203.91, 266.8709, 383.743, 498.045, 582.5122, 701.955, 764.9159, 884.3587, 968.8259, 1083.128]

millerop: Lesfip 7 cents version of miller_12.scl
[79.7254, 187.23, 312.8782, 390.2803, 497.8208, 577.4579, 701.7926, 810.4714, 889.4945, 966.3161, 1075.7535]

minerva12: Minerva[12] (99/98&176/175) 11-limit hobbit, POTE tuning
[113.1826, 226.3652, 273.3755, 386.5581, 499.7407, 587.0767, 700.2593, 813.4419, 926.6245, 973.6348, 1086.8174]

minor_clus: Chalmers' Minor Mode Cluster, Genus [333335]
[111.7313, 203.91, 315.6413, 498.045, 519.5513, 609.7763, 701.955, 813.6863, 905.865, 996.09, 1017.5963]

minor_wing: Chalmers' Minor Wing with 7 minor and 6 major triads
[203.91, 315.6413, 386.3137, 498.045, 631.2826, 701.955, 813.6863, 884.3587, 1017.5963, 1088.2687, 1129.3276]

miracle_12: A 12-tone subset of Blackjack with six 4-7-9-11 tetrads
[116.6667, 233.3333, 350.0, 433.3333, 466.6667, 550.0, 583.3333, 666.6667, 783.3333, 900.0, 1016.6667]

miracle_12a: A 12-tone chain of Miracle generators and subset of Blackjack
[116.6667, 233.3333, 350.0, 466.6667, 583.3333, 700.0, 816.6667, 933.3333, 1050.0, 1083.3333, 1166.6667]

mistyschism: Mistyschism scale 32805/32768 and 67108864/66430125
[109.7776, 203.91, 296.0887, 405.8663, 498.045, 609.7763, 701.955, 811.7326, 903.9113, 998.0437, 1107.8213]

mmswap: Swapping major and minor in 5-limit JI
[-70.6724, 203.91, 133.2376, 315.6413, 498.045, 519.5513, 701.955, 631.2826, 813.6863, 835.1926, 1017.5963]

moantone12: Moantone[12] (Passion) in 86-tET
[97.6744, 195.3488, 293.0233, 390.6977, 488.3721, 586.0465, 711.6279, 809.3023, 906.9767, 1004.6512, 1102.3256]

mobbs-mackenzie: Kenneth Mobbs and Alexander Mackenzie of Ord, Bach temperament (2005)
[93.9383, 201.4987, 297.8483, 398.8265, 499.2818, 591.9833, 700.7494, 795.8933, 902.248, 998.5651, 1095.4049]

mohaj-bala_213: Parizekmic Mohajira+Bala scale, based on a double Bala sequence
[111.7313, 250.3039, 291.4278, 454.2139, 498.045, 609.7763, 701.955, 813.6863, 952.2589, 996.09, 1156.1689]

mohaj-bala_443: Parizekmic Mohajira+Bala scale, based on a double Bala sequence
[111.7313, 250.3039, 359.1718, 454.2139, 498.045, 609.7763, 701.955, 813.6863, 952.2589, 1059.8236, 1156.1689]

mohajira-to-slendro: From Mohajira to Aeolian and Slendros
[84.4672, 203.91, 315.6413, 351.3381, 498.045, 582.5122, 701.955, 813.6863, 849.3831, 1017.5963, 1049.3629]

monarda_ji: Monarda scale by Scott Dakota, 10:12:14:17 x 6:8:9, previous to 273/272 561/560 441/440 225/224 (Tannic) tempering (2018)
[104.9554, 182.4037, 266.8709, 386.3137, 498.045, 603.0004, 701.955, 764.9159, 884.3587, 968.8259, 1101.0454]

monarda_tannic_pote: Monarda scale by Scott Dakota, 10:12:14:17 x 6:8:9, with 273/272 561/560 441/440 225/224 (Tannic) POTE tempering (2018)
[101.8692, 184.1935, 266.5179, 383.4458, 500.3738, 602.243, 699.6262, 766.8917, 883.8197, 966.144, 1102.6168]

montvallon: Montvallon's Monochord, Nouveau sisteme de musique (1742)
[92.1787, 203.91, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 794.1337, 884.3587, 996.09, 1088.2687]

monza: Irregular tuning for 18th century Italian music
[85.533, 194.526, 294.135, 389.052, 498.045, 583.578, 697.263, 789.834, 891.789, 996.09, 1086.315]

monzo_sumerian_2place12: Monzo - most accurate 2-place sexagesimal 12-tET approximation
[99.9733, 200.1271, 300.1299, 400.195, 499.9697, 599.7174, 699.7923, 799.8915, 899.6545, 999.5131, 1099.1229]

monzo_sumerian_simp12: Monzo - simplified 2-place sexagesimal 12-tET approximation
[100.9925, 198.5083, 298.4149, 400.8011, 498.045, 601.0779, 701.955, 799.8915, 900.4633, 1000.3699, 1099.1229]

moore: Moore representative Victorian well-temperament (1885)
[97.465, 198.99, 298.455, 395.98, 499.445, 596.97, 700.495, 797.96, 897.485, 998.95, 1096.475]

morgan: Augustus de Morgan's temperament (1843)
[100.0, 202.4437, 298.5337, 402.9325, 499.0225, 601.4662, 701.4662, 799.0225, 902.9325, 998.5337, 1102.4437]

moscow: Charles E. Moscow's equal beating piano tuning (1895)
[101.8664, 199.9024, 301.998, 400.2422, 502.5425, 604.1522, 701.955, 803.8214, 901.8574, 1003.953, 1102.1972]

nakika12: Nakika[12] (100/99&245/242) hobbit, 41-tET tuning
[87.8049, 175.6098, 321.9512, 409.7561, 497.561, 585.3659, 702.439, 790.2439, 878.0488, 1024.3902, 1112.1951]

nassarre: Nassarre's Equal Semitones
[103.0, 204.0, 303.0, 408.0, 507.0, 612.0, 711.0, 816.0, 915.0, 1020.0, 1107.0]

neid-mar-morg: Neidhardt-Marpurg-de Morgan temperament (1858)
[101.955, 201.955, 300.0, 401.955, 501.955, 600.0, 701.955, 801.955, 900.0, 1001.955, 1101.955]

neidhardm: modified Neidhardt temperament
[100.0, 198.045, 301.955, 398.045, 501.955, 600.0, 698.045, 800.0, 898.045, 1003.91, 1098.045]

neidhardt-f10: Neidhardt's fifth-circle no. 10, 1/6 and 1/4 Pyth. comma
[94.135, 198.045, 298.045, 392.18, 498.045, 596.09, 696.09, 796.09, 894.135, 996.09, 1094.135]

neidhardt-f10i: Neidhardt's fifth-circle no. 10, idealised
[94.135, 198.045, 298.045, 398.045, 498.045, 598.045, 696.09, 796.09, 896.09, 996.09, 1096.09]

neidhardt-f11: Neidhardt's fifth-circle no. 11, 1/12, 1/6 and 1/4 Pyth. comma
[96.09, 198.045, 296.09, 394.135, 500.0, 598.045, 700.0, 800.0, 894.135, 996.09, 1098.045]

neidhardt-f12: Neidhardt's fifth-circle no. 12, 1/12, 1/6 and 1/4 Pyth. comma (1732)
[100.0, 198.045, 300.0, 396.09, 498.045, 600.0, 700.0, 798.045, 900.0, 996.09, 1098.045]

neidhardt-f2: Neidhardt's fifth-circle no. 2, 1/6 Pyth. comma, 9- 3+
[101.955, 203.91, 298.045, 400.0, 501.955, 603.91, 698.045, 800.0, 901.955, 1003.91, 1098.045]

neidhardt-f3: Neidhardt's fifth-circle no. 3, 1/6 Pyth. comma. Also Marpurg's temperament F
[101.955, 200.0, 301.955, 400.0, 501.955, 600.0, 701.955, 800.0, 901.955, 1000.0, 1101.955]

neidhardt-f4: Neidhardt's fifth-circle no. 4, 1/4 Pyth. comma
[96.09, 198.045, 300.0, 396.09, 498.045, 600.0, 696.09, 798.045, 900.0, 996.09, 1098.045]

neidhardt-f5: Neidhardt's fifth-circle no. 5, 1/12 and 1/6 Pyth. comma
[100.0, 200.0, 298.045, 401.955, 501.955, 600.0, 700.0, 800.0, 898.045, 1001.955, 1101.955]

neidhardt-f6: Neidhardt's fifth-circle no. 6, 1/12 and 1/6 Pyth. comma
[100.0, 196.09, 300.0, 400.0, 496.09, 600.0, 700.0, 796.09, 900.0, 1000.0, 1096.09]

neidhardt-f7: Neidhardt's fifth-circle no. 7, 1/6 and 1/4 Pyth. comma
[94.135, 194.135, 298.045, 400.0, 494.135, 596.09, 696.09, 800.0, 892.18, 996.09, 1098.045]

neidhardt-f9: Neidhardt's fifth-circle no. 9, 1/12 and 1/6 Pyth. comma
[98.045, 196.09, 300.0, 400.0, 498.045, 596.09, 700.0, 800.0, 898.045, 996.09, 1100.0]

neidhardt-s1: Neidhardt's sample temperament no. 1, 1/1, -1/1 Pyth. comma (1732)
[90.225, 203.91, 317.595, 384.36, 521.505, 588.27, 701.955, 815.64, 905.865, 1019.55, 1086.315]

neidhardt-s2: Neidhardt's sample temperament no. 2, 1/12, 1/6 and 1/4 Pyth. comma (1732)
[90.225, 194.135, 294.135, 386.315, 496.09, 590.225, 698.045, 792.18, 890.225, 994.135, 1088.27]

neidhardt-s3: Neidhardt's sample temperament no. 3, 1/12, 1/6 and 1/4 Pyth. comma (1732)
[92.18, 196.09, 296.09, 388.27, 498.045, 592.18, 698.045, 794.135, 892.18, 996.09, 1090.225]

neidhardt-t1: Neidhardt's third-circle no. 1, 1/12, 1/6 and 1/4 Pyth. comma (1732) 'Für das Dorf'
[94.135, 194.135, 298.045, 392.18, 500.0, 594.135, 698.045, 796.09, 890.225, 998.045, 1092.18]

neidhardt-t2: Neidhardt's third-circle no. 2, 1/12, 1/6 and 1/4 Pyth. comma (1732) 'kleine Stadt'
[94.135, 196.09, 296.09, 392.18, 498.045, 592.18, 698.045, 796.09, 894.135, 996.09, 1092.18]

neidhardt-t3: Neidhardt's third-circle no. 3, 1/12 and 1/6 Pyth. comma
[96.09, 196.09, 296.09, 394.135, 500.0, 598.045, 698.045, 796.09, 896.09, 1001.955, 1092.18]

neidhardt-t4: Neidhardt's third-circle no. 4, 1/12 and 1/6 Pyth. comma
[96.09, 196.09, 296.09, 396.09, 498.045, 596.09, 698.045, 796.09, 894.135, 1000.0, 1094.135]

neidhardt-t5: Neidhardt's third-circle no. 5, 1/12 and 1/6 Pyth. comma
[100.0, 200.0, 300.0, 398.045, 501.955, 598.045, 700.0, 800.0, 900.0, 1000.0, 1098.045]

neidhardt1: Neidhardt I temperament (1724)
[94.135, 196.09, 296.09, 392.18, 498.045, 592.18, 698.045, 796.09, 894.135, 996.09, 1092.18]

neidhardt2: Neidhardt II temperament (1724)
[96.09, 196.09, 298.045, 394.135, 500.0, 596.09, 698.045, 796.09, 894.135, 1000.0, 1096.09]

neidhardt3: Neidhardt III temperament (1724) 'große Stadt'
[96.09, 196.09, 298.045, 394.135, 498.045, 596.09, 698.045, 796.09, 894.135, 998.045, 1096.09]

neidhardt4: Neidhardt IV temperament (1724), equal temperament
[100.0, 200.0, 300.0, 400.0, 500.0, 600.0, 700.0, 800.0, 900.0, 1000.0, 1100.0]

neidhardtn: Johann Georg Neidhardt's temperament (1732), alt. 1/6 & 0 P. Also Marpurg nr. 10
[98.045, 200.0, 298.045, 400.0, 498.045, 600.0, 698.045, 800.0, 898.045, 1000.0, 1098.045]

newcastle: Newcastle modified 1/3-comma meantone
[77.8412, 189.5725, 308.4725, 386.3137, 505.2138, 583.0549, 694.7862, 779.7962, 884.3587, 1003.2588, 1088.2687]

niederbobritzsch: Göthel organ, Niederbobritzsch, 19th cent. from Klaus Walter, 1988
[98.045, 202.4437, 298.045, 399.0225, 503.4212, 600.4887, 699.0225, 798.045, 900.0, 1001.4662, 1094.135]

norden: Reconstructed Schnitger temperament, organ in Norden. Ortgies, 2002
[85.533, 194.526, 294.135, 389.052, 502.737, 583.578, 697.263, 787.488, 891.789, 1000.782, 1086.315]

novadene: Novadene, starling-tempered skew duodene in 185-tET tuning
[123.2432, 188.1081, 311.3514, 389.1892, 499.4595, 622.7027, 700.5405, 810.8108, 888.6486, 1011.8919, 1122.1622]

odd1: ODD-1
[70.6724, 315.6413, 386.3137, 631.2826, 701.955, 772.6274, 813.6863, 884.3587, 1017.5963, 1088.2687, 1129.3276]

odd2: ODD-2
[182.4037, 203.91, 274.5824, 315.6413, 386.3137, 498.045, 568.7174, 701.955, 884.3587, 1017.5963, 1088.2687]

odonnell: John O'Donnell Bach temperament (2006), Early Music 34/4, Nov. 2006
[96.09, 196.09, 296.09, 396.09, 498.045, 596.09, 698.045, 796.09, 894.135, 996.09, 1094.135]

ogr12: Optimal Golomb Ruler of 12 segments, length 106
[22.6415, 56.6038, 283.0189, 418.8679, 486.7924, 667.9245, 792.4528, 962.2641, 1007.5472, 1109.434, 1120.7547]

oldani: 5-limit JI scale by Norbert L. Oldani (1987), Interval 5(3), p.10-11
[70.6724, 203.91, 294.135, 386.3137, 498.045, 590.2237, 701.955, 772.6274, 884.3587, 996.09, 1088.2687]

oljare: Mats Öljare, scale for "Tampere" (2001)
[155.1396, 266.8709, 386.3137, 498.045, 653.1846, 701.955, 764.9159, 884.3587, 968.8259, 1088.2687, 1151.2296]

omaha: Omaha 2.3.11 just scale
[150.6371, 203.91, 294.135, 347.4079, 498.045, 551.3179, 701.955, 852.5921, 905.865, 996.09, 1049.3629]

omahat: 243/242 tempered Omaha 2.3.11 scale, 380-tET tuning
[148.4211, 202.1053, 296.8421, 350.5263, 498.9474, 552.6316, 701.0526, 849.4737, 903.1579, 997.8947, 1051.579]

organ1373a: English organ tuning (1373) with 18:17:16 ficta semitones (Eb-G#)
[98.9546, 203.91, 302.8646, 407.82, 498.045, 596.9996, 701.955, 800.9096, 905.865, 996.09, 1109.775]

organ1373b: English organ tuning (1373) with 18:17:16 accidental semitones (Eb-G#), Pythagorean whole tones
[98.9546, 203.91, 302.8646, 407.82, 498.045, 596.9996, 701.955, 800.9096, 905.865, 1004.8196, 1109.775]

orwell9-12: Twelve notes of Orwell[9], POTE tuning. Useful to retune 12-tET To Orwell[9]
[157.1306, 157.1306, 271.4261, 428.5568, 542.8523, 542.8523, 699.9829, 814.2784, 971.409, 971.409, 1085.7045]

oxford-queens: Organ temperament, Queens College, Oxford c.1980
[93.1575, 197.263, 295.1125, 394.526, 499.0225, 593.1575, 698.6315, 793.1575, 895.8945, 997.0675, 1094.526]

oxford-queens2: Organ temperament, Queens College, Oxford (1994)
[94.7215, 197.263, 296.481, 394.526, 500.0, 594.526, 698.6315, 794.917, 895.8945, 998.436, 1094.526]

pagano_b: Pat Pagano and David Beardsley, 17-limit scale, TL 27-2-2001
[104.9554, 175.6278, 308.8654, 420.5967, 512.7754, 603.0004, 687.4676, 806.9104, 918.6417, 989.3141, 1073.7813]

palace: Palace mode+
[98.9546, 203.91, 231.1741, 435.0841, 498.045, 617.4878, 701.955, 775.6357, 852.5921, 933.1291, 1017.5963]

parapyth12-7: 2.3.7 transversal of parapyth12
[62.9609, 203.91, 266.8709, 407.82, 470.7809, 561.0059, 701.955, 764.9159, 905.865, 968.8259, 1109.775]

parapyth12trans: A JI transversal of parapyth17.scl for use in calculations. If you temper out 352/351 and 364/363 it becomes parapyth17
[62.9609, 203.91, 266.8709, 417.508, 470.7809, 551.3179, 701.955, 764.9159, 910.7903, 968.8259, 1119.463]

parizek_13lqmt: 13-limit Quasi-meantone (darker)
[71.8163, 191.2591, 310.702, 378.6022, 498.045, 577.5729, 697.0157, 764.9159, 884.3587, 1003.8015, 1075.6179]

parizek_17lqmt: 17-limit Quasi-meantone
[70.6724, 190.1152, 308.1997, 386.3137, 505.7565, 575.0706, 694.5134, 772.6274, 884.3587, 1003.8015, 1080.8271]

parizek_7lmtd1: 7-limit Quasi-Meantone No. 1, 1/1=D
[119.4428, 196.1985, 315.6413, 386.3137, 505.7565, 582.5122, 701.955, 813.6863, 892.0702, 1009.8848, 1088.2687]

parizek_7lqmtd2: 7-limit Quasi-meantone no. 2 (1/1 is D)
[119.4428, 196.1985, 315.6413, 386.3137, 505.7565, 582.5122, 694.2435, 813.6863, 892.0702, 1009.8848, 1080.5572]

parizek_cirot: Overtempered circular tuning (1/1 is F)
[78.495, 198.045, 282.405, 388.27, 494.135, 584.36, 703.91, 776.54, 892.18, 988.27, 1090.225]

parizek_epi: In The Epimoric World
[138.5727, 266.8709, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 968.8259, 1049.3629]

parizek_ji1: Petr Parizek, 12-tone septimal tuning (2002). Dominant-diminished-pajara-injera-meantone wakalix
[84.4672, 203.91, 266.8709, 386.3137, 470.7809, 582.5122, 701.955, 786.4222, 884.3587, 968.8259, 1088.2687]

parizek_jiweltmp: 19-limit Rational Well Temperament
[104.9554, 203.91, 297.513, 399.0904, 498.045, 603.0004, 701.955, 806.9104, 902.487, 996.09, 1101.0454]

parizek_jiwt2: Rational Well Temperament 2 (1/1 is Db)
[104.9554, 203.91, 297.513, 407.82, 498.045, 609.7763, 701.955, 802.3339, 905.865, 996.09, 1109.775]

parizek_jiwt3: Rational Well-temperament 3
[90.225, 195.1804, 294.135, 387.738, 498.045, 588.27, 698.577, 792.18, 891.1346, 996.09, 1086.315]

parizek_meanqr: Rational approx. of 1/4-comma meantone for beat-rate tuning, 1/1 = 257.2 Hz, TL 17-12-2005
[76.0489, 193.1401, 310.248, 386.3137, 503.4215, 579.4538, 696.5617, 772.6274, 889.7352, 1006.8264, 1082.8755]

parizek_part7_12: Partial 7-limit half-octave temperament
[29.2733, 130.5586, 231.8438, 314.9715, 416.2568, 600.0, 629.2733, 730.5586, 831.8438, 914.9715, 1016.2568]

parizek_qmeb1: Equal beating quasi-meantone tuning no. 1 - F...A# (1/1 = 261.7Hz)(3/2 5/3 5/4 7/4 7/6)
[77.0445, 196.4702, 267.0245, 385.6521, 505.4713, 582.1932, 700.8521, 771.4363, 891.6203, 968.3533, 1081.4193]

parizek_qmeb2: Equal beating quasi-meantone tuning no. 2 - F...A# (1/1 = 262.7Hz)
[80.7916, 198.4095, 272.4283, 386.9726, 505.4431, 583.8415, 698.6568, 775.3931, 892.9048, 967.4132, 1085.4106]

parizek_qmeb3: Equal beating quasi-meantone tuning no. 3 - F...A#. 1/1 = 262Hz
[81.4754, 199.4992, 273.5249, 387.6348, 505.2983, 584.9294, 699.751, 775.7963, 893.585, 967.8817, 1086.5057]

parizek_qmtp12: 12-tone quasi-meantone tuning with 1/9 Pyth. comma as basic tempering unit (F...A#)
[77.1917, 196.09, 268.0683, 384.36, 505.865, 583.0567, 699.3483, 771.3266, 890.225, 967.4167, 1083.7083]

parizek_syndiat: Petr Parizek, diatonic scale with syntonic alternatives
[182.4037, 203.91, 386.3137, 498.045, 519.5513, 680.4487, 701.955, 884.3587, 905.865, 1066.7624, 1088.2687]

parizek_syntonal: Petr Parizek, Syntonic corrections in JI tonality, Jan. 2004
[70.6724, 182.4037, 203.91, 386.3137, 498.045, 590.2237, 701.955, 772.6274, 884.3587, 905.865, 1088.2687]

parizek_temp19: Petr Parizek, genus [3 3 19 19 19] well temperament
[96.981, 203.91, 297.513, 394.494, 501.423, 595.026, 701.955, 798.936, 892.539, 999.468, 1096.4491]

parizek_well: Well-temperament with 1/6-P fifths
[98.045, 200.0, 298.045, 396.09, 498.045, 596.09, 701.955, 796.09, 898.045, 1000.0, 1094.135]

part12: 9+3=12 partition scale <12 19 27| epimorphic
[182.4037, 203.91, 294.135, 407.82, 498.045, 680.4487, 701.955, 792.18, 905.865, 996.09, 1178.4937]

partch-greek: Partch Greek scales from "Two Studies on Ancient Greek Scales" on black/white
[0.0, 62.9609, 203.91, 111.7313, 498.045, 315.6413, 701.955, 701.955, 764.9159, 813.6863, 813.6863]

pelogic2: Pelogic temperament, g=677.137654 in cycle of fifths order
[60.0364, 154.2753, 94.2389, 308.5506, 248.5142, 462.8259, 677.1377, 617.1012, 831.413, 771.3765, 985.6883]

penta1: Pentagonal scale 9/8 3/2 16/15 4/3 5/3
[133.2376, 203.91, 315.6413, 407.82, 611.73, 631.2826, 723.4613, 835.1926, 905.865, 1017.5963, 1109.775]

penta2: Pentagonal scale 7/4 4/3 15/8 32/21 6/5
[35.6968, 155.1396, 266.8709, 310.2792, 422.0105, 533.7418, 568.7174, 737.6518, 884.3587, 968.8259, 1039.4983]

pepper2: Keenan Pepper's "Noble Fifth" with chromatic/diatonic semitone = Phi (12)
[128.6693, 208.1912, 287.7132, 416.3824, 495.9044, 624.5736, 704.0956, 832.7649, 912.2868, 991.8088, 1120.478]

perry: Robin Perry, Tuning List 22-9-'98
[203.91, 315.6413, 386.3137, 498.045, 701.955, 813.6863, 884.3587, 933.1291, 968.8259, 1017.5963, 1088.2687]

perry2: Robin Perry, 7-limit scale, TL 22-10-2006
[84.4672, 182.4037, 266.8709, 386.3137, 498.045, 617.4878, 701.955, 799.8915, 884.3587, 968.8259, 1115.5328]

phrygian: Old Phrygian ??
[182.4037, 315.6413, 386.3137, 498.045, 519.5513, 680.4487, 701.955, 813.6863, 884.3587, 996.09, 1017.5963]

phrygian_enh: Phrygian Enharmonic Tonos
[98.9546, 203.91, 258.8744, 287.0252, 315.6413, 498.045, 701.955, 738.4034, 756.9194, 775.6357, 974.8476]

piagui: Mario Pizarro's Piagui temperament, steps of (9/8)^1/2 and (128/81)^1/8 (2004)
[99.0225, 198.045, 297.0675, 396.09, 498.045, 600.0, 699.0225, 798.045, 897.0675, 996.09, 1098.045]

piano7: Enhanced piano 7-limit
[92.1787, 203.91, 266.8709, 386.3137, 498.045, 590.2237, 701.955, 764.9159, 905.865, 968.8259, 1088.2687]

pipedum_12: 81/80, 2048/2025 are homophonic intervals
[92.1787, 203.91, 274.5824, 386.3137, 498.045, 590.2237, 701.955, 794.1337, 884.3587, 996.09, 1088.2687]

pipedum_12a: 81/80, 2048/2025 are homophonic intervals
[111.7313, 223.4626, 274.5824, 386.3137, 498.045, 609.7763, 701.955, 813.6863, 884.3587, 996.09, 1088.2687]

pipedum_12b: 64/63, 50/49 comma, 36/35 chroma
[84.4672, 231.1741, 315.6413, 351.3381, 498.045, 582.5122, 701.955, 813.6863, 933.1291, 968.8259, 1080.5572]

pipedum_12c: 225/224, 64/63, 36/35 are homophonic intervals
[119.4428, 203.91, 323.3528, 386.3137, 498.045, 590.2237, 701.955, 821.3978, 933.1291, 968.8259, 1088.2687]

pipedum_12d: 50/49, 128/125, 225/224 are homophonic intervals
[119.4428, 196.1985, 315.6413, 386.3137, 505.7565, 582.5122, 701.955, 813.6863, 933.1291, 968.8259, 1088.2687]

pipedum_12e: 50/49, 225/224, 3136/3125 are homophonic intervals
[119.4428, 196.1985, 315.6413, 386.3137, 505.7565, 617.4878, 701.955, 813.6863, 898.1535, 1003.8015, 1123.2443]

pipedum_12f: 128/125, 3136/3125, 703125/702464 are homophonic intervals
[78.3839, 196.1985, 315.6413, 386.3137, 505.7565, 582.5122, 701.955, 772.6274, 892.0702, 1009.8848, 1088.2687]

pipedum_12g: 50/49, 225/224, 28672/28125 are homophonic intervals
[111.7313, 155.1396, 274.5824, 386.3137, 498.045, 582.5122, 694.2435, 772.6274, 892.0702, 968.8259, 1080.5572]

pipedum_12h: 2048/2025, 67108864/66430125, Gene Ward Smith, 2004
[92.1787, 184.3574, 296.0887, 405.8663, 498.045, 590.2237, 701.955, 794.1337, 886.3124, 996.09, 1107.8213]

pipedum_12i: 64/63, 6561/6272, Gene Ward Smith, 2004
[62.9609, 203.91, 266.8709, 435.0841, 498.045, 638.9941, 701.955, 764.9159, 905.865, 996.09, 1137.0391]

pipedum_12j: 6561/6272, 59049/57344
[140.9491, 153.1859, 294.135, 435.0841, 498.045, 638.9941, 701.955, 792.18, 933.1291, 996.09, 1137.0391]

pipedum_12k: 64/63, 729/686, a no-fives 7-limit Fokker block, Gene Ward Smith, 2004
[62.9609, 203.91, 266.8709, 435.0841, 498.045, 533.7418, 701.955, 764.9159, 933.1291, 968.8259, 1031.7868]

pipedum_12l: 81/80, 361/360, 513/512, Gene Ward Smith
[93.603, 203.91, 297.513, 409.2443, 498.045, 591.648, 701.955, 795.558, 905.865, 996.09, 1111.1993]

pleyel-dussek: Pleyel and Dussek's temperament (1797) according to vague instructions
[103.185, 200.41, 307.095, 405.32, 512.005, 601.23, 702.455, 805.14, 902.865, 1009.55, 1103.275]

plum: 686/675 comma pump scale in 46-tET
[130.4348, 260.8696, 391.3043, 443.4783, 521.7391, 573.913, 704.3478, 834.7826, 965.2174, 1069.5652, 1095.6522]

polansky_owt1: Optimal WT 1, from A Math. Model for Optimal Tuning Systems, 2008
[101.955, 203.75, 297.1501, 396.25, 498.045, 600.0, 701.955, 803.75, 897.1501, 996.25, 1098.045]

polansky_owt2: Optimal WT 2, from A Math. Model for Optimal Tuning Systems, 2008
[93.1, 203.1, 296.3, 397.4, 498.5, 591.7, 701.6, 794.8, 903.4, 997.4, 1091.4]

polyhymnia12: 3-Distributional even 12-note scale in Polyhymnia temperament
[149.7915, 192.461, 342.2525, 384.922, 534.7135, 653.561, 696.2305, 846.022, 888.6915, 1038.483, 1081.1525]

ponsford1: David Ponsford Bach temperament I (2005)
[100.0, 198.045, 300.0, 394.135, 500.0, 598.045, 700.0, 800.0, 896.09, 1000.0, 1096.09]

ponsford2: David Ponsford Bach temperament II (2005)
[109.775, 203.91, 305.865, 403.91, 501.955, 607.82, 703.91, 807.82, 903.91, 1003.91, 1105.865]

portsmouth: Portsmouth, a 2.3.7.11 subgroup scale
[80.537, 231.1741, 266.8709, 435.0841, 498.045, 551.3179, 701.955, 782.492, 933.1291, 968.8259, 1049.3629]

prelleur: Peter Prelleur's well temperament (1731)
[95.2398, 197.2801, 298.8434, 395.2755, 501.0202, 594.8499, 697.9801, 796.8884, 895.6888, 1000.0558, 1094.0677]

preston: Preston's equal beating temperament (1785)
[94.1618, 198.7556, 300.7808, 396.2298, 500.3595, 594.3988, 698.8642, 793.1898, 897.9553, 1000.1383, 1095.7267]

preston2: Preston's theoretically correct well temperament
[94.041, 198.2974, 302.5538, 396.5949, 500.8513, 594.8923, 699.1487, 793.1898, 897.4462, 1001.7026, 1095.7436]

prime_12: Prime dodecatonic scale
[104.9554, 251.344, 297.513, 386.3137, 551.3179, 628.2743, 701.955, 840.5277, 968.8259, 1029.5772, 1145.0356]

prinz: Prinz well-tempermament (1808)
[90.225, 193.1569, 294.135, 386.3137, 498.045, 588.27, 696.5784, 792.18, 889.7353, 996.09, 1088.2687]

prinz2: Prinz equal beating temperament (1808)
[90.225, 189.0495, 294.135, 386.3137, 498.045, 588.27, 693.054, 792.18, 887.0201, 996.09, 1088.2687]

pris: Optimized (15/14)^3 (16/15)^4 (21/20)^3 (25/24)^2 scale.
[111.7313, 196.1985, 266.8709, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 968.8259, 1080.5572]

prisun: Unimarv tempered pris/cv3, 166-tET
[115.6626, 202.4096, 267.4699, 383.1325, 498.7952, 585.5422, 701.2048, 816.8675, 881.9277, 968.6747, 1084.3374]

prodigy12: Prodigy[12] (225/224, 441/440) hobbit, 72-tET tuning. As a miracle scale, [-8, -7, -6, -2, -1, 0, 1, 2, 5, 6, 7, 8]
[116.6667, 233.3333, 266.6667, 383.3333, 500.0, 583.3333, 700.0, 816.6667, 933.3333, 966.6667, 1083.3333]

ptolemy_ext: Jon Lyle Smith, extended septimal Ptolemy, MMM 7-2-2011
[84.4672, 203.91, 266.8709, 435.0841, 498.045, 617.4878, 701.955, 786.4222, 905.865, 968.8259, 1137.0391]

pump12_1: Pump1 35 intervals 30 triads 197-tET
[115.736, 268.0203, 383.7563, 499.4924, 615.2284, 700.5076, 767.5127, 816.2437, 883.2487, 998.9848, 1084.264]

pump12_2: Pump2 35 intervals 30 triads 197-tET
[67.0051, 115.736, 182.7411, 268.0203, 383.7563, 499.4924, 615.2284, 767.5127, 883.2487, 998.9848, 1084.264]

pykett_dorset: Colin Pykett, a Dorset Temperament (2002)
[100.7, 199.44, 299.83, 401.81, 500.5, 600.03, 700.15, 800.76, 901.39, 1001.8, 1101.5]

pyle: Howard Willet Pyle quasi equal temperament
[100.05, 199.89, 300.17, 400.22, 500.05, 599.99, 699.73, 799.9, 899.86, 1000.25, 1100.4]

pyramid: This scale may also be called the "Wedding Cake"
[203.91, 274.5824, 386.3137, 498.045, 590.2237, 701.955, 772.6274, 884.3587, 905.865, 996.09, 1088.2687]

pyramid_down: Upside-Down Wedding Cake (divorce cake)
[111.7313, 203.91, 315.6413, 427.3726, 498.045, 701.955, 813.6863, 905.865, 996.09, 1017.5963, 1129.3276]

pyth_12: 12-tone Pythagorean scale
[113.685, 203.91, 294.135, 407.82, 498.045, 611.73, 701.955, 815.64, 905.865, 996.09, 1109.775]

pyth_12s: Pythagorean with major thirds flat by a schisma
[113.685, 203.91, 317.595, 384.36, 498.045, 588.27, 701.955, 815.64, 882.405, 1019.55, 1086.315]

pyth_7a: Pythagorean 7-tone with whole tones divided arithmetically
[104.9554, 203.91, 308.8654, 407.82, 498.045, 603.0004, 701.955, 806.9104, 905.865, 1010.8204, 1109.775]

rain123: Raintree scale tuned to 123-tET
[97.561, 204.8781, 302.439, 400.0, 497.561, 604.8781, 702.439, 800.0, 897.561, 995.1219, 1102.439]

rain159: Raintree scale tuned to 159-tET
[98.1132, 203.7736, 301.8868, 400.0, 498.1132, 603.7736, 701.8868, 800.0, 898.1132, 996.2264, 1101.8868]

raintree: Raintree Goldbach 12-tone 5-limit JI tuning, TL 14-3-2007
[92.1787, 203.91, 296.0887, 405.8663, 498.045, 609.7763, 701.955, 794.1337, 903.9113, 996.09, 1107.8213]

raintree2: Raintree Goldbach Celestial tuning, TL 15-10-2009
[97.9365, 196.1985, 301.8465, 400.1085, 505.7565, 604.0185, 694.2435, 799.8915, 898.1535, 1003.8015, 1102.0635]

rameau: Rameau's modified meantone temperament (1725)
[86.8021, 193.1569, 297.8001, 386.3137, 503.4216, 584.8471, 696.5784, 788.7571, 889.7353, 1006.8431, 1082.8921]

rameau-flat: Rameau Si bémol, see Pierre-Yves Asselin in "Musique et temperament"
[92.668, 193.157, 304.888, 386.3137, 503.422, 582.2, 696.578, 800.0, 889.735, 1006.843, 1082.892]

rameau-french: Standard French temperament, Rameau version (1726), C. di Veroli, 2002
[88.3344, 193.1569, 297.9794, 386.3137, 503.4216, 584.8471, 696.5784, 793.1569, 889.7353, 1001.4666, 1082.8921]

rameau-gall: Rameau's temperament, after Gallimard (1st solution)
[84.1139, 193.1569, 296.5007, 386.3137, 503.4216, 582.1589, 696.5784, 788.7571, 889.7353, 1006.8431, 1082.8921]

rameau-gall2: Rameau's temperament, after Gallimard (2nd solution)
[81.4074, 193.1569, 292.4145, 386.3137, 503.4216, 580.9579, 696.5784, 785.0829, 889.7353, 1006.8431, 1082.8921]

rameau-merc: Rameau's temperament, after Mercadier
[76.049, 193.1569, 286.6078, 386.3137, 498.045, 579.4706, 696.5784, 775.8534, 889.7353, 993.9394, 1082.8921]

rameau-nouv: Temperament by Rameau in Nouveau Systeme (1726)
[92.4725, 193.1569, 302.0529, 386.3137, 503.4216, 587.6823, 696.5784, 797.2627, 889.7353, 1006.8431, 1082.8921]

rameau-righ: Rameau's temperament, after Benjamin Righetti (2016)
[80.8282, 193.1569, 293.9171, 386.3137, 503.4216, 581.2628, 696.5784, 780.991, 889.7353, 1006.8431, 1082.8921]

rameau-sharp: Rameau dieses, see Pierre-Yves Asselin in "Musique et temperament"
[76.049, 193.157, 285.6, 386.3137, 498.045, 579.471, 696.578, 775.316, 889.735, 993.2, 1082.892]

ramis: Monochord of Ramos de Pareja (Ramis de Pareia), Musica practica (1482). 81/80 & 2048/2025. Switched on Bach
[92.1787, 182.4037, 294.135, 386.3137, 498.045, 590.2237, 701.955, 792.18, 884.3587, 996.09, 1088.2687]

rectsp6: Rectangle minimal beats spectrum of order 6, also Songlines.DEM, Bill Thibault and Scott Gresham-Lancaster (1992)
[266.8709, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 968.8259, 1017.5963, 1049.3629]

reinhard: Andreas Reinhard's Monochord (1604) (variant of Ganassi's). Also Abraham Bartolus (1614)
[98.9546, 203.91, 292.7107, 386.3137, 498.045, 596.9996, 701.955, 790.7557, 884.3587, 983.3133, 1088.2687]

riccati: Giordano Riccati, Venetian temperament, Barbieri, 1986
[91.8529, 196.7412, 301.6296, 393.4825, 501.6293, 591.853, 698.3706, 791.8528, 895.1119, 1001.6295, 1091.8531]

riley_albion: Terry Riley's Harp of New Albion scale, inverse Malcolm's Monochord, 1/1 on C#
[111.7313, 203.91, 315.6413, 386.3137, 498.045, 609.7763, 701.955, 813.6863, 884.3587, 996.09, 1088.2687]

riley_rosary: Terry Riley, tuning for Cactus Rosary (1993)
[35.6968, 203.91, 266.8709, 386.3137, 470.7809, 551.3179, 701.955, 737.6518, 840.5277, 968.8259, 1088.2687]

robot_dead: Dead Robot (see lattice)
[70.6724, 111.7313, 203.91, 274.5824, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 884.3587, 1088.2687]

robot_live: Live Robot
[203.91, 315.6413, 386.3137, 427.3726, 498.045, 631.2826, 701.955, 813.6863, 925.4176, 1088.2687, 1129.3276]

rogers_wind: Prent Rogers, scale for Dry Hole Canyon for Woodwind Quintet
[128.2982, 315.6413, 359.4723, 386.3137, 563.3823, 582.5122, 701.955, 745.7861, 813.6863, 968.8259, 1061.4273]

romieu: Romieu's Monochord, Mémoire théorique & pratique (1758)
[70.6724, 203.91, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 772.6274, 884.3587, 996.09, 1088.2687]

romieu_inv: Romieu inverted, Pure (just) C minor in Wilkinson: Tuning In
[70.6724, 182.4037, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 813.6863, 884.3587, 996.09, 1088.2687]

rothert: Thomas Rothert, Bayreuth temperament, 1/8 P consecutive
[96.09, 198.045, 300.0, 396.09, 500.9775, 594.135, 699.0225, 798.045, 897.0675, 1001.955, 1095.1125]

rousseau: Rousseau's Monochord, Dictionnaire de musique (1768)
[70.6724, 203.91, 315.6413, 386.3137, 498.045, 568.7174, 701.955, 813.6863, 884.3587, 1017.5963, 1088.2687]

rousseau2: Standard French temperament Rousseau-2, C. di Veroli
[81.4256, 193.1569, 287.5847, 386.3137, 498.045, 581.2628, 696.5784, 783.3806, 889.7353, 993.8409, 1082.8921]

rousseau3: Standard French temperament Rousseau-3, C. di Veroli, 2002
[81.4256, 193.1569, 288.8392, 386.3137, 498.045, 579.4706, 696.5784, 783.3806, 889.7353, 994.2978, 1082.8921]

rousseau4: Standard French temperament Rousseau-4, C. di Veroli
[81.4256, 193.1569, 287.5847, 386.3137, 498.045, 579.4706, 696.5784, 783.3806, 889.7353, 993.8409, 1082.8921]

rousseauk: Kami Rousseau's 7-limit tri-blues scale
[84.4672, 203.91, 266.8709, 470.7809, 498.045, 582.5122, 701.955, 764.9159, 968.8259, 996.09, 1080.5572]

rousseauw: Jean-Jacques Rousseau's temperament (1768)
[97.7122, 197.9202, 300.1248, 395.8404, 500.5408, 596.2564, 698.9601, 799.1681, 896.8803, 1000.5823, 1094.8005]

rsr_12: RSR - 7 limit JI
[111.7313, 231.1741, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 1017.5963, 1088.2687]

rvf4: 697-703 cents, increments of 1 cent
[92.0, 197.0, 297.0, 392.0, 500.0, 591.0, 699.0, 794.0, 894.0, 999.0, 1091.0]

rvfj_12: Regularly varied fifths well temperament with just fifth. Op de Coul (2007)
[93.7795, 196.4454, 295.2014, 394.3127, 498.045, 593.6018, 698.045, 794.3127, 895.2014, 996.4455, 1093.7795]

samad_oghab_dokhtaramme_zurnascale: Ushshaq-like Zurna scale on A from Dokhtar Amme sang by Samad Oghab
[221.3095, 354.5471, 375.7895, 401.9811, 448.1501, 478.2593, 575.0014, 701.955, 900.0261, 1056.5021, 1077.7445]

sankey: John Sankey's Scarlatti tuning, personal evaluation based on d'Alembert's
[85.6, 193.4, 291.4, 386.3137, 498.045, 584.7, 696.7, 787.5, 888.7, 994.9, 1086.315]

sauveur: Sauveur's tempered system of the harpsichord. Traité (1697)
[85.429, 194.319, 311.789, 395.69, 502.325, 587.221, 697.153, 807.712, 893.287, 1009.919, 1090.274]

sauveur2: Sauveur's Système Chromatique des Musiciens (Mémoires 1701), 12 out of 55.
[109.091, 196.364, 305.455, 392.727, 501.818, 610.909, 698.182, 807.273, 894.545, 1003.636, 1090.909]

sauveur_ji: Application des sons harmoniques à la composition des jeux d'orgues (1702) (PB 81/80 & 128/125)
[70.6724, 203.91, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 813.6863, 884.3587, 1017.5963, 1088.2687]

scheffer: H.Th. Scheffer (1748) modified 1/5-comma temperament, Sweden
[83.576, 195.307, 292.9616, 390.615, 502.346, 585.922, 697.654, 781.23, 892.961, 1004.693, 1088.2687]

scheidemann: Vogels reconstruction of Scheidemann/Praetorius organ temperament
[86.8021, 193.1569, 294.135, 391.6903, 503.4216, 584.8471, 696.5784, 783.3806, 895.1119, 1001.4666, 1088.2687]

schiassi: Filippo Schiassi
[92.1787, 203.91, 296.0887, 386.3137, 498.045, 590.2237, 701.955, 794.1337, 884.3587, 996.09, 1088.2687]

schlesinger_jupiter: Schlesinger's Jupiter scale
[98.9546, 203.91, 258.8744, 315.6413, 563.3823, 631.2826, 701.955, 775.6357, 852.5921, 933.1291, 1017.5963]

schlesinger_mars: Schlesinger's Mars scale
[88.8007, 182.4037, 281.3583, 386.3137, 617.4878, 680.4487, 745.7861, 813.6863, 884.3587, 958.0394, 1034.9958]

schlesinger_saturn: Schlesinger's Saturn scale
[54.9644, 111.7313, 231.1741, 359.4723, 498.045, 571.7257, 648.6821, 729.2191, 813.6863, 902.487, 996.09]

schlick-barbour: Reconstructed temp. A. Schlick, Spiegel d. Orgelmacher und Organisten (1511) by Barbour
[90.225, 196.09, 301.955, 392.18, 501.955, 590.225, 698.045, 796.09, 894.135, 1001.955, 1090.225]

schlick-husmann: Schlick's temperament reconstructed by Heinrich Husmann (1967)
[85.0, 196.0, 305.0, 390.0, 502.0, 589.0, 698.0, 799.0, 892.0, 1003.0, 1088.0]

schlick-lange: Reconstructed temp. Arnoldt Schlick (1511) by Helmut Lange, Ein Beitrag zur musikalischen Temperatur, 1968, p. 482
[85.458, 195.8451, 306.2323, 391.6903, 502.0774, 587.5354, 697.9226, 800.2449, 893.7677, 1004.1549, 1089.6129]

schlick-ratte: Schlick's temperament reconstructed by F.J. Ratte (1991)
[88.27, 196.09, 303.91, 392.18, 501.955, 590.225, 698.045, 800.0, 894.135, 1001.955, 1090.225]

schlick-schugk: Schlick's temperament reconstructed by Hans-Joachim Schugk (1980)
[80.841, 194.526, 308.211, 389.052, 502.737, 583.578, 697.263, 778.104, 891.789, 1005.474, 1086.315]

schlick-tessmer: Schlick's temperament reconstructed by Manfred Tessmer (1994)
[87.7812, 195.1125, 302.4438, 390.225, 502.4438, 587.7812, 697.5562, 798.5338, 892.6688, 1002.4438, 1087.7812]

schlick-vogel: Schlick's temperament reconstructed by Harald Vogel
[85.533, 194.526, 294.135, 389.052, 502.737, 583.578, 697.263, 787.488, 891.789, 1000.782, 1086.315]

schlick2: Another reconstructed Schlick's modified meantone (Poletti?)
[88.174, 196.0864, 303.9495, 392.1797, 501.9522, 589.2248, 698.0449, 800.2238, 894.1348, 1002.9532, 1090.2246]

schlick3: Possible well-tempered interpretation of 1511 tuning, Margo Schulter
[88.27, 196.09, 303.91, 392.18, 501.955, 589.2475, 698.045, 799.0225, 894.135, 1002.9325, 1090.225]

schlick3a: Variation on Schlick (1511), all 5ths within 7c of pure, Margo Schulter
[88.27, 196.09, 303.91, 392.18, 501.955, 589.2475, 698.045, 797.0, 894.135, 1002.9325, 1090.225]

schneegass1: Cyriacus Schneegaß (1590), meantone, 1st method: rational approximation
[75.8733, 193.1067, 310.34, 386.2133, 503.4467, 579.32, 696.5533, 772.4266, 889.66, 1006.8933, 1082.7667]

schneegass2: Cyriacus Schneegaß (1590), meantone, 2nd method: geometric approximation
[79.0051, 193.1067, 310.34, 389.3451, 503.4467, 582.4518, 696.5533, 775.5584, 889.66, 1006.8933, 1085.8984]

schneegass3: Cyriacus Schneegaß (1590), meantone, 3rd method: numeric approximation
[80.782, 194.072, 308.108, 388.353, 500.907, 581.226, 695.96, 775.339, 889.802, 1005.458, 1085.483]

schneider_log: Robert Schneider, scale of log(4) .. log(16), 1/1=264Hz
[258.3879, 444.172, 587.0538, 701.955, 797.3384, 878.425, 948.642, 1010.3496, 1065.2361, 1114.5469, 1159.225]

schroeter: Christoph Gottlieb Schröter, approximation of ET by the first order difference series 1 2 2 2 2 2 2 2 3 3 3 3. Also from Zarlino
[62.9609, 182.4037, 294.135, 399.0904, 498.045, 591.648, 680.4487, 764.9159, 884.3587, 996.09, 1101.0454]

schroeter2: Christoph Gottlieb Schröter, approximation of ET by a 2nd order difference series, Leipzig (1747)
[100.6598, 199.2119, 298.9267, 399.3162, 499.9633, 600.5148, 700.675, 800.1986, 898.8845, 998.7271, 1099.238]

schulter_14_13-12: Temperament with just 14/13 apotome, close to Pepper Noble Fifth
[128.2982, 208.0852, 287.8722, 416.1704, 495.9574, 624.2556, 704.0426, 832.3409, 912.1278, 991.9148, 1120.213]

schulter_44_39-12: 12-note chromatic tuning with 352:351, 364:363 (G=1/1, Eb-G#)
[128.2982, 208.8353, 289.2097, 417.508, 498.045, 626.3432, 701.955, 782.492, 910.7903, 991.1647, 1119.463]

schulter_44_39-12_c: 44_39-12.scl with C as 1/1 (Eb-G#)
[128.2982, 203.91, 284.447, 412.7453, 493.1197, 621.418, 701.955, 830.2532, 910.7903, 991.1647, 1119.463]

schulter_O3-zalzalian12_D: Sampling of Zalzalian maqam/dastgah modes, slendro/pelog modes
[138.2812, 207.4219, 264.8438, 345.7031, 472.2656, 680.8594, 704.2969, 842.5781, 969.1406, 1050.0, 1176.5625]

schulter_bamm24b-pegasus12d: Offshoot of Kraig Grady's Centaur: Rast/Penchgah plus Archytas-like modes on 1/1
[63.0817, 203.91, 266.9917, 357.2167, 498.045, 561.1267, 701.955, 765.0367, 905.865, 968.9467, 1059.1717]

schulter_indigo12: Expansion of 12:13:14:16:18:21:22:24 by Margo Schulter, TL 9-7-2010
[62.9609, 138.5727, 266.8709, 347.4079, 498.045, 636.6177, 701.955, 764.9159, 840.5277, 968.8259, 1049.3629]

schulter_met12: Milder Extended Temperament, 5ths average 703.711 cents
[126.5625, 207.4219, 289.4531, 414.8438, 496.875, 622.2656, 704.2969, 829.6875, 911.7188, 992.5781, 1119.1406]

schulter_neogji12: M. Schulter, neo-Gothic 12-note JI (prim. 2/3/7/11) 1/1=F with Eb key as D+1
[133.0609, 203.91, 336.9709, 417.508, 498.045, 621.418, 701.955, 835.0159, 905.865, 915.553, 1119.463]

schulter_piaguilike2: Like Mario Pizarro's Piagui: steps of (9/8)^1/2 and (128/81)^1/8
[99.0225, 198.045, 297.0675, 396.09, 498.045, 600.0, 699.0225, 798.045, 897.0675, 996.09, 1098.045]

schulter_qcmqd8_4: F-C# in 1/4-comma meantone, other 5ths ~4.888 cents wide or (2048/2025)^(1/4)
[76.049, 193.1569, 289.7353, 386.3137, 503.4216, 579.4706, 696.5784, 782.8921, 889.7353, 996.5784, 1082.8921]

schulter_wilsonistic: Margo Schulter, Wilsonistic Pivot on C
[58.0356, 208.8353, 266.8709, 417.508, 498.045, 551.3179, 701.955, 759.9906, 910.7903, 968.8259, 1119.463]

schulter_zarte84: Temperament extraordinaire, Zarlino's 2/7-comma meantone (F-C#)
[70.6724, 191.6207, 287.431, 383.2414, 504.1896, 574.8621, 695.8103, 779.0517, 887.431, 995.8103, 1079.0517]

schulter_zarte84n: Zarlino temperament extraordinaire, 1024-tET mapping
[70.3125, 191.0156, 287.1094, 383.2031, 503.9062, 574.2188, 696.0938, 778.125, 887.1094, 996.0938, 1079.2969]

scottd1: Dale Scott's temperament 1, TL 9-6-1999
[92.1787, 194.135, 296.0887, 388.27, 499.9987, 590.2237, 698.045, 794.1337, 890.225, 998.045, 1088.2687]

scottd2: Dale Scott's temperament 2, TL 9-6-1999
[93.744, 195.699, 297.654, 391.398, 500.391, 591.789, 698.436, 795.699, 892.962, 999.609, 1091.007]

scottd3: Dale Scott's temperament 3, TL 9-6-1999
[95.1125, 197.0675, 299.0225, 394.135, 499.9995, 593.1575, 699.0225, 797.0675, 895.1125, 1000.9775, 1093.1575]

scottd4: Dale Scott's temperament 4, TL 9-6-1999
[96.3847, 197.8774, 299.1978, 395.5734, 500.7261, 595.5848, 699.2739, 797.7983, 896.4814, 1000.0228, 1095.2674]

scottr_ebvt: Robert Scott Equal Beating Victorian Temperament (2001)
[95.625, 196.55, 296.715, 393.84, 497.805, 593.43, 699.195, 797.22, 894.745, 996.31, 1095.235]

scottr_lab: Robert Scott Tunelab EBVT (2002)
[94.455, 195.82, 295.725, 392.67, 498.085, 592.51, 700.065, 796.55, 893.745, 995.92, 1094.765]

secor12_1: George Secor's 12-tone temperament ordinaire #1, proportional beating
[86.5333, 194.5568, 294.1288, 389.1136, 499.9179, 585.5411, 697.2784, 789.3748, 891.8352, 997.9629, 1086.392]

secor12_2: George Secor's closed 12-tone well-temperament #2, with 7 just fifths
[90.225, 194.8683, 294.135, 388.0251, 498.045, 588.27, 698.2899, 792.18, 891.4467, 996.09, 1086.315]

secor12_3: George Secor's closed 12-tone temperament #3 with 5 meantone, 3 just, and 2 wide fifths
[83.137, 193.1569, 292.4236, 386.3137, 501.7101, 581.182, 696.5784, 785.092, 889.7353, 999.7551, 1082.8921]

secor1_4tx: George Secor's rational 1/4-comma temperament extraordinaire
[83.3307, 194.0403, 291.8128, 387.2082, 499.61, 583.577, 697.4757, 786.3512, 890.6103, 997.655, 1084.8655]

secor1_5tx: George Secor's 1/5-comma temperament extraordinaire (ratios supplied by G. W. Smith)
[87.8135, 195.2754, 294.3974, 390.6149, 500.1969, 585.8585, 697.6431, 789.7685, 892.9505, 998.2419, 1088.2687]

secor5_23stx: George Secor's synchronous 5/23-comma temperament extraordinaire
[85.8639, 194.1013, 295.968, 389.2455, 499.878, 585.6532, 697.0576, 790.1443, 891.679, 999.571, 1086.3114]

secor5_23tx: George Secor's rational 5/23-comma temperament extraordinaire
[86.4659, 194.552, 294.1204, 389.1113, 499.9106, 585.551, 697.2823, 789.3455, 891.8089, 997.9556, 1086.4011]

secor5_23wt: George Secor's rational 5/23-comma proportional-beating well-temperament
[90.225, 194.6504, 294.135, 389.1215, 498.045, 588.27, 697.2652, 792.18, 891.3679, 996.09, 1086.315]

secor_bicycle: George Secor, 13-limit harmonic bicycle (1963), also Erv Wilson, see David Rosenthal: Helix Song, XH 7&8, 1979
[138.5727, 203.91, 266.8709, 386.3137, 498.045, 551.3179, 701.955, 840.5277, 884.3587, 968.8259, 1049.3629]

secor_swt149: George Secor's 149-based synchronous WT
[96.0474, 197.4429, 298.1244, 393.2711, 500.9473, 594.0924, 698.0777, 796.1694, 895.9389, 996.816, 1092.1374]

secor_vrwt: George Secor's Victorian rational well-temperament (based on Ellis #2)
[94.6622, 197.0085, 296.8298, 392.0558, 499.08, 593.5579, 700.0367, 795.6085, 894.6808, 997.9762, 1092.3114]

secor_wt1-5: George Secor's 1/5-comma well-temperament (ratios supplied by G. W. Smith)
[90.225, 195.2754, 294.135, 390.6149, 498.045, 588.0375, 697.6431, 792.18, 892.9505, 996.09, 1088.2687]

secor_wt1-7: George Secor's 1/7-comma well-temperament
[93.9798, 197.756, 297.8898, 395.512, 501.122, 593.268, 698.878, 795.9348, 896.634, 999.8848, 1094.39]

secor_wt1-7r: George Secor's 1/7-comma well-temperament, Gene Ward Smith rational version
[95.1545, 197.7412, 297.2128, 395.5278, 501.1228, 593.1995, 698.8727, 797.1095, 896.6372, 999.1678, 1094.413]

secor_wt10: George Secor's 12-tone well-temperament, proportional beating
[95.223, 197.756, 297.212, 395.512, 501.122, 593.268, 698.878, 797.178, 896.634, 999.167, 1094.39]

secor_wt2-11: George Secor's rational 2/11-comma well-temperament
[92.058, 196.0675, 295.968, 392.1724, 499.878, 590.103, 698.0382, 794.013, 894.1122, 997.923, 1090.2238]

secor_wtpb-24a: George Secor's 24-triad proportional-beating well-temperament (24a)
[90.225, 195.1804, 294.135, 387.738, 498.045, 588.27, 699.5786, 792.18, 890.3329, 996.09, 1089.693]

secor_wtpb-24b: George Secor's 24-triad proportional-beating well-temperament (24b)
[90.225, 193.4823, 294.135, 388.8766, 498.045, 588.27, 697.6751, 792.18, 891.1847, 996.09, 1087.667]

secor_wtpb-24c: George Secor's 24-triad proportional-beating well-temperament (24c)
[92.6014, 197.5568, 296.5114, 390.1144, 500.4214, 590.6464, 698.7813, 794.5564, 893.845, 998.4664, 1089.5366]

secor_wtpb-24d: George Secor's 24-triad proportional-beating well-temperament (24d)
[96.0474, 197.4429, 298.1244, 393.2711, 500.9473, 594.0924, 698.0777, 796.1694, 895.9389, 1000.0794, 1092.1374]

secor_wtpb-24e: George Secor's 24-triad proportional-beating well-temperament (24e)
[94.9279, 196.1985, 297.1816, 392.5977, 499.6181, 593.7176, 699.8553, 795.8893, 894.4022, 998.2527, 1092.8792]

seidel_12: Dave Seidel, Harmonicious 12-tone scale, TL 31-01-2009
[203.91, 291.9254, 386.3137, 470.7809, 551.3179, 628.2743, 701.955, 772.6274, 905.865, 1049.3629, 1145.0356]

seikilos: Seikilos Tuning
[62.9609, 203.91, 266.8709, 435.0841, 498.045, 533.7418, 701.955, 764.9159, 905.865, 968.8259, 1137.0391]

septenarius440: Andreas Sparschuh's septenarius @ middle c'=263Hz or a'=440Hz
[96.0265, 192.904, 295.7799, 392.8839, 499.6899, 595.6277, 695.3598, 793.8249, 890.9289, 997.7349, 1094.8389]

septenarius440a: Tom Dent's septenarius @ middle c'=262 Hz or a'=440 Hz
[102.6217, 199.4992, 302.3751, 399.4791, 501.3457, 602.2229, 701.955, 800.4201, 897.5241, 1004.3301, 1101.4341]

septenariusGG49: Sparschuh's version @ middle-c'=262Hz or a'=440Hz
[99.5052, 199.4992, 302.3751, 399.4791, 501.3457, 597.5502, 697.5442, 800.4201, 897.5241, 1004.3301, 1097.9331]

serafini-11: Carlo Serafini, scale of "Piano 11"
[165.0042, 203.91, 266.8709, 386.3137, 551.3179, 617.4878, 701.955, 813.6863, 884.3587, 968.8259, 1034.9958]

serafini-moonsuite: Carlo Serafini, empirical tuning for Moonsuite (2008)
[71.825, 169.67, 293.563, 422.097, 530.203, 572.019, 689.753, 763.106, 857.565, 1021.418, 1096.835]

serafini-sunday: Scale for A Nearly Normal Sunday (2015)
[78.125, 184.375, 284.375, 371.875, 500.0, 581.25, 678.125, 784.375, 881.25, 993.75, 1071.875]

sev-elev: "Seven-Eleven Blues" of Pitch Palette
[111.7313, 203.91, 266.8709, 386.3137, 435.0841, 551.3179, 701.955, 764.9159, 884.3587, 968.8259, 1088.2687]

seventhwell: from Hauptwerk
[96.9279, 197.2071, 297.4864, 394.4143, 501.3964, 594.9728, 698.6036, 797.2071, 895.8107, 999.4414, 1093.0178]

sevish: Sean "Sevish" Archibald's "Trapped in a Cycle" JI scale
[53.2729, 203.91, 266.8709, 386.3137, 470.7809, 551.3179, 701.955, 818.1888, 884.3587, 905.865, 968.8259]

sevish_whitey: Just scale used in Whitey on Golden Hour
[71.3936, 266.8709, 302.5677, 506.4777, 533.7418, 569.4386, 737.6518, 773.3486, 800.6127, 968.8259, 1004.5227]

shahin_adl: Mohajeri Shahin, arithmetic division of length temperament, TL 14-12-2006
[97.387, 195.9803, 295.6559, 396.2575, 497.5904, 599.4157, 701.4436, 803.3257, 904.6486, 1004.9261, 1103.5928]

shahin_agin: Mohajeri Shahin, Microaginco (2007)
[75.0, 150.0, 237.5, 325.0, 412.5, 537.5, 662.5, 725.0, 837.5, 950.0, 1075.0]

shahin_baran: Mohajeri Shahin, Baran scale
[80.0, 166.6667, 260.0, 360.0, 466.6667, 580.0, 700.0, 780.0, 870.0, 970.0, 1080.0]

shahin_wt: Mohajeri Shahin, well temperament, TL 28-12-2006
[98.4794, 203.4756, 301.955, 400.0, 498.4794, 603.4756, 701.955, 800.0, 898.4794, 1003.4756, 1101.955]

shansx: Untempered Tanaka/Hanson harmonic system including the kleisma
[62.5651, 244.9689, 315.6413, 378.2064, 560.6101, 631.2826, 813.6863, 876.2514, 946.9239, 1129.3276, 1191.8927]

sheiman_silver: Michael Sheiman's Silver scale, TL 26-03-2010
[138.5727, 203.91, 342.4827, 493.1197, 621.418, 701.955, 772.6274, 884.3587, 996.09, 1061.4273, 1132.0998]

siamese: Siamese Tuning, after Clem Fortuna's Microtonal Guide
[49.8, 172.0, 215.0, 344.0, 515.0, 564.8, 685.8, 735.8, 857.8, 914.8, 1028.8]

silbermann1: Gottfried Silbermann's temperament nr. 1
[87.2925, 200.0, 307.82, 390.225, 502.9325, 590.225, 700.0, 784.36, 895.1125, 1005.865, 1090.225]

silbermann2: Gottfried Silbermann's temperament nr. 2, 1/6 Pyth. comma meantone
[86.315, 196.09, 305.865, 392.18, 501.955, 588.27, 698.045, 784.36, 894.135, 1003.91, 1090.225]

silbermann2a: Modified Silbermann's temperament nr. 2, also used by Hinsz in Midwolda
[86.315, 196.09, 298.045, 392.18, 501.955, 588.27, 698.045, 784.36, 894.135, 1003.91, 1090.225]

silver: Equal beating chromatic scale, A.L.Leigh Silver JASA 29/4, 476-481, 1957
[100.034, 199.5188, 299.7996, 399.5161, 500.0174, 599.9408, 699.3216, 799.5036, 899.1273, 999.5403, 1099.3807]

simonton: Simonton Integral Ratio Scale, JASA 25/6 (1953): A new integral ratio scale
[104.9554, 203.91, 297.513, 386.3137, 498.045, 603.0004, 701.955, 795.558, 884.3587, 996.09, 1101.0454]

simp12: Stiltner-Vaisvil 12 note 2.3.5.7.13 scale
[203.91, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 840.5277, 884.3587, 968.8259, 1017.5963]

simp12-amity: simp12 tempered in amity, 99-tET tuning
[206.0606, 315.1515, 387.8788, 496.9697, 581.8182, 703.0303, 812.1212, 836.3636, 884.8485, 969.697, 1018.1818]

sintemp6: Sine modulated fifths, A=1/6 Pyth, one cycle, f0=-90 degrees
[100.0, 192.7038, 305.3412, 390.7488, 503.3862, 596.09, 696.09, 803.3862, 890.7488, 1005.3412, 1092.7038]

sintemp6a: Sine modulated fifths, A=1/12 Pyth, one cycle, f0= D-A
[93.6813, 197.3294, 297.3294, 393.6813, 500.0, 592.7038, 699.0225, 795.3744, 895.3744, 999.0225, 1092.7038]

slen_pel: Pelog white, Slendro black
[0.0, 137.0, 228.0, 446.0, 575.0, 484.0, 687.0, 728.0, 820.0, 960.0, 1098.0]

slen_pel16: 16-tET Slendro and Pelog
[0.0, 150.0, 150.0, 225.0, 300.0, 450.0, 675.0, 675.0, 750.0, 825.0, 900.0]

slen_pel23: 23-tET Slendro and Pelog
[0.0, 208.6957, 208.6957, 156.5217, 469.5652, 313.0435, 730.4348, 730.4348, 678.2609, 939.1304, 834.7826]

slen_pel_jc: Slendro (John Chalmers) plus Pelog S1c,P1c#,S2d,eb,P2e,S3f,P3f#,S4g,ab,P4a,S5bb,P5b
[0.0, 231.1741, 231.1741, 111.7313, 462.3482, 498.045, 701.955, 701.955, 701.955, 933.1291, 813.6863]

slen_pel_schmidt: Dan Schmidt (Pelog white, Slendro black)
[0.0, 203.91, 266.8709, 386.3137, 498.045, 551.3179, 701.955, 701.955, 968.8259, 968.8259, 1088.2687]

smith_eh: Robert Smith's Equal Harmony temperament (1749)
[71.848, 191.9566, 312.0651, 383.9131, 504.0217, 575.8697, 695.9783, 767.8263, 887.9349, 1008.0434, 1079.8914]

smith_mq: Robert Smith approximation of quarter comma meantone fifth
[76.0494, 193.157, 310.2645, 386.3137, 503.4215, 579.471, 696.5785, 772.6274, 889.7355, 1006.843, 1082.8925]

smithgw72i: Gene Ward Smith 72-tET subset version of Duodene, TL 02-06-2002
[116.6667, 200.0, 316.6667, 383.3333, 500.0, 583.3333, 700.0, 816.6667, 883.3333, 1016.6667, 1083.3333]

smithgw_asbru: Modified bifrost (2003)
[89.6019, 200.0, 310.3981, 400.0, 510.3981, 589.6019, 700.0, 800.0, 900.0, 1010.3981, 1089.6019]

smithgw_bifrost: Six meantone fifths, four pure, two of sqrt(2048/2025 sqrt(5))
[86.8021, 193.1569, 299.5116, 386.3137, 503.4216, 584.8471, 696.5784, 793.1569, 889.7353, 1001.4666, 1082.8921]

smithgw_cauldron: Circulating temperament with two pure 9/7 thirds
[86.5061, 189.2049, 308.0963, 378.4098, 505.3976, 575.711, 694.6024, 797.3012, 883.8073, 1010.7951, 1073.0122]

smithgw_circu: Circulating temperament, brats of 1.5, 2.0, 4.0
[100.278, 195.9078, 304.188, 389.435, 504.1642, 593.345, 696.7404, 802.233, 894.1391, 1004.0584, 1091.39]

smithgw_dhexmarv: Dualhex in 11-limit minimax Marvel ({225/224, 385/384}-planar)
[115.8026, 151.9942, 267.7968, 383.5995, 468.9926, 535.5937, 700.5979, 767.1989, 852.5921, 968.3947, 1084.1974]

smithgw_duopors: 3-->10/3 5-->24/3 sorted rotated Duodene in 22-tET
[54.5455, 163.6364, 327.2727, 381.8182, 490.9091, 545.4545, 709.0909, 818.1818, 872.7273, 1036.3636, 1036.3636]

smithgw_exotic1: Exotic temperament featuring four pure 14/11 thirds and two pure fifths
[86.0617, 198.3853, 310.709, 391.246, 503.5697, 589.6314, 701.955, 782.492, 894.8157, 1007.1393, 1093.201]

smithgw_glamma: Glamma = reca1c2, <12 19 27 34|-epimorphic
[70.6724, 155.1396, 231.1741, 315.6413, 386.3137, 617.4878, 653.1846, 701.955, 884.3587, 933.1291, 968.8259]

smithgw_glumma: Gene Smith's 7-limit Glumma scale (2002)
[48.7704, 231.1741, 315.6413, 386.3137, 546.8154, 617.4878, 701.955, 884.3587, 933.1291, 968.8259, 1164.3032]

smithgw_glumma-hendec: glumma tempered in 13-limit POTE-tuned hendec
[50.4062, 233.6042, 315.9896, 384.8228, 549.5938, 618.427, 700.8125, 884.0104, 934.4166, 966.3958, 1168.0208]

smithgw_grail: Holy Grail circulating temperament with two 14/11 and one 9/7 major third
[86.869, 195.623, 304.377, 391.246, 504.377, 578.081, 695.623, 795.623, 895.623, 1013.1651, 1086.869]

smithgw_graileq: 56% RMS grail + 44% JI grail
[85.2932, 196.2447, 307.1963, 392.4894, 505.7848, 579.6631, 697.9532, 796.2447, 894.5362, 1012.8264, 1086.7046]

smithgw_grailrms: RMS optimized Holy Grail
[84.0482, 196.7359, 309.4235, 393.4718, 506.897, 580.913, 699.7941, 796.7359, 893.6777, 1012.5588, 1086.5747]

smithgw_hahn12: Hahn-reduced 12 note scale, Fokker block 225/224, 126/125, 64/63
[119.4428, 231.1741, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 968.8259, 1088.2687]

smithgw_majraj1: Majraj 648/625 6561/6250 scale
[133.2376, 253.0761, 266.4751, 386.3137, 519.5513, 568.7174, 701.955, 835.1926, 884.3587, 1017.5963, 1150.8339]

smithgw_majraj2: Majraj 648/625 6561/6250 scale
[133.2376, 182.4037, 315.6413, 448.8789, 498.045, 631.2826, 701.955, 751.1211, 884.3587, 1017.5963, 1066.7624]

smithgw_majraj3: Majraj 648/625 6561/6250 scale
[133.2376, 182.4037, 315.6413, 448.8789, 498.045, 568.7174, 701.955, 751.1211, 884.3587, 1017.5963, 1066.7624]

smithgw_majsyn1: First Majsyn 648/625 81/80 scale
[49.1661, 182.4037, 315.6413, 364.8074, 498.045, 568.7174, 680.4487, 751.1211, 884.3587, 996.09, 1066.7624]

smithgw_majsyn2: Second Majsyn 648/625 81/80 scale
[70.6724, 182.4037, 315.6413, 386.3137, 498.045, 568.7174, 701.955, 751.1211, 884.3587, 1017.5963, 1066.7624]

smithgw_majsyn3: Third Majsyn 648/625 81/80 scale
[70.6724, 203.91, 315.6413, 386.3137, 519.5513, 568.7174, 701.955, 772.6274, 884.3587, 1017.5963, 1088.2687]

smithgw_meandin: Gene Smith, inverted detempered 7-limit meantone
[119.4428, 231.1741, 315.6413, 435.0841, 498.045, 617.4878, 701.955, 813.6863, 933.1291, 1017.5963, 1137.0391]

smithgw_meanlesfip: 12-note 5-limit meantone lesfip
[71.9983, 191.3923, 306.331, 384.1884, 503.5824, 575.5807, 695.1112, 769.7612, 887.7904, 1005.8195, 1080.4695]

smithgw_meanred: 171-et Hahn reduced rational Meantone[12]
[125.5261, 190.1152, 315.6413, 378.6022, 505.7565, 568.7174, 694.2435, 821.3978, 884.3587, 1009.8848, 1074.4739]

smithgw_mmt: Modified meantone with 5/4, 14/11 and 44/35 major thirds, TL 17-03-2003
[76.049, 193.1569, 279.0705, 386.3137, 503.4216, 579.4706, 696.5784, 782.492, 889.7353, 975.6489, 1082.8921]

smithgw_modmos12a: A 12-note modmos in 50-et meantone
[24.0, 192.0, 264.0, 384.0, 456.0, 576.0, 696.0, 768.0, 840.0, 960.0, 1080.0]

smithgw_pel1: 125/108, 135/128 periodicity block no. 1
[70.6724, 182.4037, 203.91, 386.3137, 498.045, 568.7174, 701.955, 772.6274, 813.6863, 884.3587, 1088.2687]

smithgw_pel3: 125/108, 135/128 periodicity block no. 3
[182.4037, 203.91, 315.6413, 386.3137, 498.045, 701.955, 772.6274, 813.6863, 884.3587, 1017.5963, 1088.2687]

smithgw_pris: optimized (15/14)^3 (16/15)^4 (21/20)^3 (25/24)^2 scale
[111.7313, 196.1985, 266.8709, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 968.8259, 1080.5572]

smithgw_prisa: optimized (15/14)^3 (16/15)^4 (21/20)^3 (25/24)^2 scale
[84.4672, 196.1985, 315.6413, 386.3137, 470.7809, 582.5122, 701.955, 813.6863, 898.1535, 968.8259, 1080.5572]

smithgw_ragasyn1: Ragasyn 6561/6250 81/80 scale
[49.1661, 182.4037, 315.6413, 364.8074, 498.045, 568.7174, 701.955, 751.1211, 884.3587, 1017.5963, 1066.7624]

smithgw_ratwell: 7-limit rational well-temperament
[90.225, 196.1985, 294.135, 384.6854, 498.045, 588.27, 701.955, 792.18, 890.442, 996.09, 1086.315]

smithgw_ratwolf: Eleven fifths of (416/5)^(1/11) and one 20/13 wolf, G.W. Smith 2003
[70.8634, 191.6753, 312.4871, 383.3505, 504.1624, 575.0258, 695.8376, 766.7011, 887.5129, 1008.3247, 1079.1882]

smithgw_rectoo: Hahn-reduced circle of fifths via <12 19 27 34| kernel
[182.4037, 231.1741, 315.6413, 386.3137, 498.045, 701.955, 772.6274, 813.6863, 884.3587, 968.8259, 1017.5963]

smithgw_starra: 12 note {126/125, 176/175} scale, 328-tET version (inverse of smithgw_starrb.scl)
[80.4878, 204.878, 310.9756, 391.4634, 471.9512, 621.9512, 702.439, 782.9268, 889.0244, 969.5122, 1093.9024]

smithgw_starrb: 12 note {126/125, 176/175} scale, 328-tET version (inverse of smithgw_starra.scl)
[80.4878, 160.9756, 267.0732, 391.4634, 471.9512, 578.0488, 702.439, 782.9268, 889.0244, 969.5122, 1050.0]

smithgw_starrc: 12 note {126/125, 176/175} scale, 328-et version
[80.4878, 160.9756, 310.9756, 391.4634, 471.9512, 578.0488, 702.439, 782.9268, 889.0244, 969.5122, 1093.9024]

smithgw_syndia2: Second 81/80 2048/2025 Fokker block
[111.7313, 223.4626, 315.6413, 427.3726, 498.045, 609.7763, 701.955, 813.6863, 925.4176, 1017.5963, 1107.8213]

smithgw_syndia3: Third 81/80 2048/2025 Fokker block
[92.1787, 203.91, 296.0887, 386.3137, 478.4924, 590.2237, 701.955, 794.1337, 905.865, 976.5374, 1088.2687]

smithgw_syndia4: Fourth 81/80 2048/2025 Fokker block
[92.1787, 203.91, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 813.6863, 905.865, 996.09, 1088.2687]

smithgw_syndia6: Sixth 81/80 2048/2025 Fokker block
[92.1787, 203.91, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 794.1337, 905.865, 996.09, 1088.2687]

smithgw_tetra: {225/224, 385/384} tempering of two-tetrachord 12-note scale
[85.3147, 201.3986, 317.4825, 383.2168, 468.5315, 584.6154, 700.6993, 816.7832, 882.5175, 967.8322, 1083.9161]

smithgw_tr7_13: 81/80 ==> 28561/28672
[610.5386, 484.2154, 126.3232, 968.4309, 357.8923, 1452.6463, 842.1077, 231.5691, 1326.3232, 715.7846, 1810.5386]

smithgw_tr7_13b: reverse reduced 81/80 ==> 28561/28672
[610.5386, 715.7846, 126.3232, 231.5691, 842.1077, 252.6463, 357.8923, 968.4309, 1073.6768, 484.2154, 589.4614]

smithgw_tr7_13r: reduced 81/80 ==> 28561/28672
[589.4614, 484.2154, 1073.6768, 968.4309, 357.8923, 252.6463, 842.1077, 231.5691, 126.3232, 715.7846, 610.5386]

smithgw_tra: 81/80 ==> 1029/512
[1232.7778, 733.1111, 499.6667, 1466.2222, 233.4444, 2199.3333, 966.5556, 266.2222, 1699.6667, 466.8889, 2432.7778]

smithgw_tre: 81/80 ==> 1029/512 ==> reduction
[32.778, 733.111, 700.333, 266.222, 233.444, 999.333, 966.556, 933.778, 499.667, 466.889, 1232.778]

smithgw_treb: reversed 81/80 ==> 1029/512 ==> reduction
[32.778, 466.889, 499.667, 933.778, 966.556, 999.333, 233.444, 266.222, 700.333, 733.111, 1167.222]

smithgw_trx: reduced 3/2->7/6 5/4->11/6 scale
[1086.9639, 525.2144, 412.1784, 1050.4289, 937.3928, 375.6433, 262.6072, 149.5711, 787.8216, 674.7856, 113.0361]

smithgw_trxb: reversed reduced 3/2->7/6 5/4->11/6 scale
[113.0361, 674.7856, 787.8216, 149.5711, 262.6072, 375.6433, 937.3928, 1050.4289, 412.1784, 525.2144, 1086.9639]

smithgw_wa: Wreckmeister A temperament, TL 2-6-2002
[77.7778, 233.3333, 311.1111, 388.8889, 500.0, 622.2222, 700.0, 811.1111, 888.8889, 1011.1111, 1122.2222]

smithgw_wa120: 120-tET version of Wreckmeister A temperament
[80.0, 230.0, 310.0, 390.0, 500.0, 620.0, 700.0, 810.0, 890.0, 1010.0, 1120.0]

smithgw_wb: Wreckmeister B temperament, TL 2-6-2002
[122.2222, 188.8889, 311.1111, 388.8889, 500.0, 577.7778, 700.0, 811.1111, 888.8889, 1011.1111, 1077.7778]

smithgw_well1: Well-temperament, Gene Ward Smith (2005)
[92.1576, 195.6414, 296.0676, 388.9111, 499.9776, 590.2026, 698.8457, 794.1126, 892.0762, 998.0226, 1088.2476]

smithgw_whelp1: Well-temperament with one pure third, Gene Ward Smith (2003)
[92.1787, 193.1569, 294.135, 386.3137, 494.1553, 593.0113, 693.1777, 793.1569, 893.1361, 993.3025, 1092.1585]

smithgw_whelp2: well-temperament with two pure thirds
[91.6566, 192.7213, 293.6118, 386.3137, 493.7666, 591.6372, 699.0902, 791.7921, 892.6826, 993.7473, 1085.4039]

smithgw_whelp3: well-temperament with three pure thirds
[92.4014, 193.1569, 293.9123, 386.3137, 501.1553, 591.2017, 698.8447, 793.1569, 887.469, 995.112, 1085.1584]

smithgw_wilcmarv11: Wilson Class scale in 11-limit minimax Marvel
[85.3931, 151.9942, 316.9984, 383.5995, 468.9926, 584.7952, 700.5979, 767.1989, 901.7936, 968.3947, 1084.1974]

smithgw_wilcmarv7: Wilson Class scale in 1/4-kleisma Marvel
[84.4672, 153.2117, 315.6413, 384.3858, 468.853, 584.4401, 700.0271, 768.7717, 900.0814, 968.8259, 1084.4129]

smithgw_wreckpop: "Wreckmeister" 13-limit meanpop (50-et) tempered thirds
[72.0, 192.0, 312.0, 384.0, 504.0, 576.0, 696.0, 816.0, 888.0, 960.0, 1128.0]

smithgw_yarman12: Gene Ward Smith's Circulating 12-tone Temperament in 159-tET inspired by Ozan Yarman
[98.1132, 196.2264, 316.9811, 384.9057, 505.6604, 588.6793, 694.3396, 807.5472, 890.566, 1011.3207, 1079.2453]

smithj12: Jon Lyle Smith, 5-limit JI scale, MMM 21-3-2006
[70.6724, 203.91, 274.5824, 407.82, 478.4924, 568.7174, 701.955, 772.6274, 905.865, 976.5374, 1109.775]

sonbirkezsorted: Sonbirkez Huzzam scale
[196.7709, 281.2381, 371.1937, 498.045, 701.955, 813.6863, 835.1926, 857.5173, 898.7259, 983.1931, 1073.1487]

sorge: Sorge's Monochord (1756). Fokker block 81/80 128/125
[70.6724, 203.91, 274.5824, 386.3137, 498.045, 590.2237, 701.955, 772.6274, 884.3587, 1017.5963, 1088.2687]

sorge1: Georg Andreas Sorge temperament I (1744)
[90.225, 192.18, 294.135, 384.36, 498.045, 588.27, 696.09, 792.18, 888.27, 996.09, 1086.315]

sorge2: Georg Andreas Sorge temperament II (1744)
[98.045, 196.09, 301.955, 396.09, 501.955, 598.045, 698.045, 800.0, 896.09, 1001.955, 1098.045]

sorge3: Georg Andreas Sorge temperament III (1744)
[94.135, 196.09, 298.045, 396.09, 498.045, 594.135, 698.045, 796.09, 894.135, 998.045, 1094.135]

sorge4: Georg Andreas Sorge, well temperament, (1756, 1758)
[96.09, 196.09, 298.045, 394.135, 498.045, 596.09, 698.045, 798.045, 894.135, 998.045, 1096.09]

spanyi: Miklós Spányi Bach temperament (2007)
[91.8543, 203.91, 295.1126, 389.541, 498.3709, 593.4511, 701.955, 793.4834, 896.7255, 996.7417, 1091.496]

sparschuh-2009well885Hz: Andreas Sparschuh, modern pianos with an fusing 3rd: C-E ~+0.654...c "sharp" above 5/4
[92.3969, 194.7953, 296.3069, 386.9681, 499.6806, 590.4419, 698.6792, 794.3519, 890.8917, 998.032, 1088.4869]

sparschuh-442widefrench5th: Rational temperament, 1/1=264.5 Hz, Andreas Sparschuh (2008)
[92.3969, 194.7953, 296.9962, 388.2762, 499.6806, 590.4419, 698.6792, 796.419, 888.9344, 998.9512, 1088.4869]

sparschuh-442widefrench5th-a: Margo Schulter's proposed revision with A at 885/529
[92.3969, 194.7953, 296.9962, 388.2762, 499.6806, 590.4419, 698.6792, 794.3519, 890.8917, 998.9512, 1088.4869]

sparschuh-885organ: Andreas Sparschuh, for neobaroque pipe-organs with fusing 3rds C-E, G-B & F-A (2009)
[89.2915, 194.7953, 296.9962, 386.9681, 503.3549, 586.948, 698.6792, 792.2823, 890.8917, 1000.7881, 1085.8671]

sparschuh-eleven_eyes: 12 out of 53 starting from a'=440Hz
[89.4563, 203.91, 291.9819, 386.3137, 498.045, 589.0575, 701.955, 787.2547, 884.3587, 994.86, 1088.2687]

sparschuh-epimoric7: Sparschuh's epimoric two- and one-7th part of syntonic comma (2010)
[90.3458, 194.7257, 294.135, 389.4024, 498.045, 588.3908, 698.899, 792.18, 890.5307, 996.09, 1088.2687]

sparschuh-eqbeat-fac_ceg: Sparschuh's 'Equal-Beating' major triads F~A~C & C~E~G well-temperament (2014)
[94.227, 196.5749, 298.0954, 388.9468, 501.9931, 592.272, 699.3179, 796.1404, 892.2459, 1000.0504, 1090.5509]

sparschuh-equalbeating: Sparschuh's Equal-Beating, A4=440Hz, TL 14-5-2010
[92.4915, 199.2119, 295.2892, 390.5311, 500.6821, 593.0364, 701.955, 794.4465, 894.883, 998.7271, 1091.0814]

sparschuh-gothic440: Andreas Sparschuh, Gothic style, A=440
[92.91, 139.0789, 295.7799, 387.6297, 499.6899, 590.955, 699.7594, 793.8249, 890.9289, 997.7349, 1089.5847]

sparschuh-jsbloops440: Sparschuh's 2007 interpretation of J.S. Bach's WTC loops @ 440 cps
[91.0965, 193.8526, 295.0065, 386.6419, 498.4552, 589.5307, 701.4079, 793.0515, 885.9989, 996.9615, 1088.1593]

sparschuh-neovictorian: Andreas Sparschuh, epimoric neo-Victorian well-temperament
[93.603, 198.3599, 294.135, 393.4235, 498.045, 591.648, 698.3891, 795.558, 897.1354, 996.09, 1089.693]

sparschuh-neovictorian2: Andreas Sparschuh, neo-Victorian temperament, C4 = 262 Hz or A = 440
[90.1217, 199.4992, 302.3751, 394.2249, 501.3457, 588.1667, 701.955, 796.2534, 897.5241, 1004.3301, 1090.9098]

sparschuh-oldpiano: Sparschuh's-Old-Piano in absolute Hertzians and cents approximation
[92.3544, 201.2729, 294.8759, 387.894, 498.045, 590.3994, 699.3179, 793.4765, 892.2459, 996.09, 1088.4444]

sparschuh-pc: Andreas Sparschuh, division of Pyth. comma, Werckmeister variant
[95.1125, 197.0675, 297.0675, 389.2475, 499.0225, 593.1575, 700.9775, 796.09, 893.1575, 998.045, 1091.2025]

sparschuh-sc: Syntonic comma variant of sparschuh-pc.scl. TL 08-02-2009
[94.7055, 195.6836, 296.8233, 388.8405, 498.9411, 592.7505, 699.1052, 795.7644, 892.2621, 997.8822, 1090.7955]

sparschuh-squiggle_clavichord: Bach temperament, a'=400 Hz
[88.0777, 194.6488, 291.9877, 387.0364, 498.9483, 586.1227, 700.7498, 790.0327, 887.9692, 994.9602, 1088.0277]

sparschuh-squiggle_harpsichord: Andreas Sparschuh, Bach temperament
[88.0777, 194.6488, 295.0383, 387.0364, 500.3024, 586.1227, 700.7498, 790.0327, 887.9692, 1001.0525, 1088.0277]

sparschuh-stanhope: Sparschuh's (2010) septenarian variant of Stanhopes (1806) idea
[90.501, 196.4789, 294.135, 386.3137, 498.045, 589.7875, 701.955, 792.456, 891.4106, 996.09, 1088.2687]

sparschuh-wohltemperiert: C-major beats C:E:G = 4: 5*(1316/1315): 6*(1314/1315) synchronously, Andreas Sparschuh (2008)
[92.91, 195.8458, 295.7799, 387.6297, 499.6899, 590.955, 700.638, 793.8249, 890.9289, 997.7349, 1089.5847]

sparschuh_19limwell: Sparschuh's 19-limit well-temperament with epimoric 5ths & 3rds (2010)
[90.225, 195.1804, 294.135, 387.738, 498.045, 591.648, 699.5786, 792.18, 891.1346, 996.09, 1089.693]

sparschuh_41_23_bi_epi: Sparschuh's 41- and 23-limit bi-epimoric well-temperament (2010)
[92.6014, 197.5568, 296.5114, 389.3219, 500.1575, 590.6464, 700.9534, 794.5564, 888.1594, 998.4664, 1091.0679]

sparschuh_5limdodek: Sparschuh's 5-limit dodecatonics with two Kirnberger 5ths: C-G & A-E
[90.225, 193.849, 294.135, 386.3137, 498.045, 588.27, 700.0013, 792.18, 892.466, 996.09, 1086.315]

sparschuh_bach19lim: Sparschuh's (2012) 19-limit Bach's decorative ornament tuning
[90.225, 195.1804, 294.135, 386.7364, 498.045, 588.27, 698.577, 792.18, 891.1346, 996.09, 1086.315]

sparschuh_bach_cup: Septenarian interpretation of J.S.Bach's cup compiled by A.Sparschuh
[90.0207, 195.9494, 292.8269, 387.3595, 503.2674, 589.72, 700.2107, 790.8719, 891.6657, 998.7032, 1088.3849]

sparschuh_dent: Modified Sparschuh temperament with a'=419 Hz by Tom Dent
[94.3318, 196.1985, 298.2418, 394.6038, 498.9104, 592.3768, 697.3322, 796.2868, 894.0266, 998.2527, 1092.8792]

sparschuh_mietke: Andreas Sparschuh, proposal for Mietke's lost "Bach" hpschd, 1/1=243, a=406, TL 6-10-2008
[90.225, 195.1804, 294.135, 387.738, 498.045, 591.648, 699.5786, 792.18, 888.6281, 996.09, 1089.693]

sparschuh_wtc: Andreas Sparschuh WTC temperament. 1/1=250 Hz, modified Collatz sequence
[94.3318, 196.1985, 298.2418, 394.6038, 498.9104, 592.3768, 697.3322, 796.2868, 898.1535, 998.2527, 1092.8792]

spec1_14: Spectrum sequence of 8/7: 1 to 27 reduced by 2/1
[104.9554, 203.91, 297.513, 386.3137, 470.7809, 551.3179, 701.955, 772.6274, 840.5277, 905.865, 968.8259]

spec1_17: Spectrum sequence of 7/6: 1 to 27 reduced by 2/1
[104.9554, 203.91, 297.513, 386.3137, 551.3179, 628.2743, 701.955, 772.6274, 840.5277, 905.865, 1088.2687]

spec1_25: Spectrum sequence of 5/4: 1 to 25 reduced by 2/1
[104.9554, 203.91, 386.3137, 470.7809, 551.3179, 628.2743, 701.955, 772.6274, 840.5277, 968.8259, 1088.2687]

spec1_33: Spectrum sequence of 4/3: 1 to 29 reduced by 2/1
[104.9554, 203.91, 386.3137, 470.7809, 551.3179, 701.955, 772.6274, 840.5277, 968.8259, 1029.5772, 1088.2687]

spec1_4: Spectrum sequence of 7/5: 1 to 25 reduced by 2/1
[203.91, 297.513, 386.3137, 470.7809, 551.3179, 628.2743, 701.955, 772.6274, 840.5277, 968.8259, 1088.2687]

spec1_5: Spectrum sequence of 1.5: 1 to 27 reduced by 2/1
[203.91, 297.513, 386.3137, 470.7809, 551.3179, 701.955, 772.6274, 840.5277, 905.865, 968.8259, 1088.2687]

specr2: Spectrum sequence of sqrt(2): 1 to 29 reduced by 2/1
[203.91, 297.513, 386.3137, 470.7809, 551.3179, 701.955, 772.6274, 840.5277, 968.8259, 1029.5772, 1088.2687]

specr3: Spectrum sequence of sqrt(3): 1 to 31 reduced by 2/1
[104.9554, 297.513, 386.3137, 551.3179, 701.955, 772.6274, 840.5277, 905.865, 1029.5772, 1088.2687, 1145.0356]

stade: Organs in St. Cosmae, Stade; Magnuskerk, Anloo; H.K. Sluipwijk, modif. 1/4 mean
[81.4256, 193.1569, 289.7353, 386.3137, 498.045, 579.4706, 696.5784, 783.3806, 889.7353, 996.09, 1082.8921]

stanhope: Well temperament of Charles, third earl of Stanhope (1801)
[90.225, 196.09, 294.135, 384.36, 498.045, 588.27, 701.955, 792.18, 890.225, 996.09, 1086.315]

stanhope2: Stanhope temperament (real version?) with 1/3 synt. comma temp.
[91.6903, 196.7412, 294.6234, 386.3137, 498.045, 590.2237, 701.955, 793.1569, 891.5275, 996.09, 1088.2687]

stanhope_f: Stanhope temperament, equal beating version by Farey (1807)
[90.225, 192.8838, 294.135, 384.36, 498.045, 588.27, 701.955, 792.18, 887.3316, 996.09, 1086.315]

stanhope_m: Stanhope's (1806) monochord string lenghts compiled by A.Sparschuh
[104.054, 198.5083, 298.4149, 386.3137, 498.045, 596.9996, 701.955, 813.6863, 908.5722, 1008.9617, 1088.2687]

stanhope_s: Stanhope temperament, alt. version with 1/3 syntonic comma
[91.202, 196.741, 295.112, 386.3137, 498.045, 589.247, 701.955, 793.157, 891.527, 996.09, 1088.2687]

starling: Starling temperament, Herman Miller (1999)
[111.2, 200.0, 311.2, 388.8, 500.0, 588.8, 700.0, 811.2, 888.8, 1000.0, 1088.8]

starling12: Starling[12] hobbit in <135 214 314 379| tuning
[80.0, 231.1111, 311.1111, 391.1111, 497.7778, 622.2222, 702.2222, 808.8889, 888.8889, 1013.3333, 1120.0]

stelhex-catakleismic: Stelhex tempered in 13-limit POTE-tuned catakleismic
[84.9631, 267.8004, 316.7375, 383.6876, 468.6508, 584.538, 700.4252, 816.3124, 901.2755, 968.2256, 1017.1627]

stelhex2: Stellated two out of 1 3 5 9 hexany
[92.1787, 203.91, 386.3137, 407.82, 519.5513, 590.2237, 701.955, 772.6274, 884.3587, 905.865, 1088.2687]

stelhex5: Stellated two out of 1 3 7 9 hexany, stellation is degenerate
[203.91, 266.8709, 407.82, 470.7809, 674.6909, 701.955, 737.6518, 905.865, 968.8259, 1137.0391, 1172.7359]

stevin: Simon Stevin, monochord division of 10000 parts for 12-tET (1585)
[100.1363, 199.9975, 299.9926, 400.2193, 500.1237, 600.0166, 700.0517, 800.4412, 900.5928, 1000.4042, 1100.43]

strahle: Daniel P. Stråhle's Geometrical scale (1743)
[101.3695, 201.9258, 301.8465, 401.3028, 500.4612, 599.4852, 698.537, 797.779, 897.3756, 997.4947, 1098.3094]

sub24-12: Subharmonics 24-12. Phrygian Harmonia-Aliquot 24 (flute tuning)
[73.6807, 150.6371, 231.1741, 315.6413, 404.442, 498.045, 596.9996, 701.955, 813.6863, 933.1291, 1061.4273]

sub40: Subharmonics 40-20
[88.8007, 182.4037, 281.3583, 386.3137, 498.045, 617.4878, 745.7861, 813.6863, 884.3587, 1034.9958, 1115.5328]

sub50: 12 out of subharmonics 25-50
[70.6724, 182.4037, 301.8465, 386.3137, 475.1144, 617.4878, 667.672, 772.6274, 884.3587, 1003.8015, 1066.7624]

sullivan_blue: John O'Sullivan, Blue Temperament (2010), many good intervals within 256/255
[121.5605, 200.7339, 313.5236, 388.4314, 501.2215, 580.3951, 701.955, 816.8623, 889.4404, 1012.5144, 1085.0923]

sullivan_blueji: John O'Sullivan, Blue JI, 7-limit Natural Pan Tuning (2007). 3/2 is also tonic
[119.4428, 203.91, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 1017.5963, 1088.2687]

sullivan_eagle: John O'Sullivan, Eagle temperament (2016)
[113.3313, 203.91, 315.6413, 386.3137, 498.045, 584.1122, 701.955, 813.6863, 884.3587, 1017.5963, 1088.2687]

sullivan_raven: John O'Sullivan, Raven temperament v2 (2012)
[113.8151, 208.9919, 315.6413, 386.3137, 498.045, 577.4304, 701.955, 810.2984, 877.5828, 967.132, 1095.0446]

sullivan_ravenji: John O'Sullivan, Raven JI (2016)
[70.6724, 203.91, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 1017.5963, 1088.2687]

sullivan_sh: John O'Sullivan, 7-limit Seventh Heaven scale (2011)
[119.4428, 231.1741, 266.8709, 435.0841, 470.7809, 582.5122, 617.4878, 764.9159, 933.1291, 968.8259, 1137.0391]

sullivan_zen: John O'Sullivan, 7-limit just Zen scale (2011)
[119.4428, 203.91, 266.8709, 435.0841, 498.045, 582.5122, 701.955, 764.9159, 884.3587, 1017.5963, 1137.0391]

sullivan_zen2: John O'Sullivan, Zen temperament (2011)
[114.1, 203.9, 265.7, 436.2, 498.0, 587.9, 702.0, 758.4, 890.0, 1011.9, 1143.5]

super_12: A superparticular 12-tone scale
[119.4428, 231.1741, 336.1295, 435.0841, 528.6871, 617.4878, 701.955, 821.3978, 933.1291, 1026.7321, 1115.5328]

t-side: Tau-on-Side
[70.6724, 111.7313, 203.91, 386.3137, 498.045, 590.2237, 701.955, 772.6274, 813.6863, 884.3587, 1088.2687]

t-side2: Tau-on-Side opposite
[203.91, 274.5824, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 884.3587, 976.5374, 1017.5963, 1088.2687]

tamil_vi: Vilarippalai scale in Tamil music, Vidyasankar Sundaresan
[90.225, 182.4037, 294.135, 386.3137, 498.045, 590.2237, 680.4487, 792.18, 884.3587, 996.09, 1088.2687]

tamil_vi2: Vilarippalai scale with 1024/729 tritone
[90.225, 182.4037, 294.135, 386.3137, 498.045, 588.27, 680.4487, 792.18, 884.3587, 996.09, 1088.2687]

tanbur: Sub-40 tanbur scale
[43.8311, 88.8007, 134.9697, 182.4037, 231.1741, 275.0051, 319.9748, 366.1438, 413.5778, 462.3482, 512.5324]

tansur: William Tans'ur temperament from A New Musical Grammar (1746) p. 73
[90.7953, 197.2063, 294.135, 392.5661, 498.045, 588.8403, 699.0852, 792.7503, 894.0362, 996.09, 1089.9436]

tapek-ribbon: Eq-diff ribbon extension of Superpyth, made of two Tapek sequences
[122.0892, 220.5566, 391.3245, 441.056, 489.7926, 611.8333, 710.2983, 881.0625, 930.7753, 979.5457, 1101.5988]

taylor_g: Gregory Taylor's Dutch train ride scale based on pelog_schmidt
[84.4672, 165.0042, 203.91, 315.6413, 519.5513, 582.5122, 701.955, 786.4222, 813.6863, 866.9592, 1017.5963]

taylor_n: Nigel Taylor's Circulating Balanced temperament (20th cent.)
[92.18, 194.135, 296.09, 388.27, 498.045, 590.225, 697.0675, 794.135, 891.2025, 998.045, 1090.225]

temp12b2w: The fifths on black keys beat twice the amount of fifths on white keys
[102.7134, 200.8017, 300.7603, 401.9441, 499.4419, 603.3903, 700.0907, 801.1529, 901.0967, 999.5802, 1102.4213]

temp12bf1: Temperament with fifths beating 1.0 Hz at 1/1=256 Hz
[101.9973, 200.1489, 298.9888, 400.7088, 499.7348, 601.6355, 699.6993, 801.8258, 900.0946, 999.0461, 1100.8745]

temp12ebf: Equal beating temperament, Barthold Fritz (1756), The Best Factory Tuners (1840)
[100.034, 199.5188, 299.7996, 399.516, 500.0174, 599.9407, 699.3216, 799.5036, 899.1273, 999.5403, 1099.3807]

temp12ebf4: Eleven equal beating fifths and just fourth
[98.7841, 199.1179, 298.1681, 398.757, 498.045, 598.8619, 699.0813, 798.0249, 898.5116, 997.7044, 1098.43]

temp12ebfp: All fifths except G#-Eb beat same as 700 c. C-G
[103.559, 200.6504, 298.343, 401.6579, 499.5098, 602.9838, 700.0, 803.6726, 900.8645, 998.6526, 1102.0629]

temp12ebfr: Exact values of equal beating temperament of Best Factory Tuners (1840)
[100.034, 199.5188, 299.7996, 399.5161, 500.0174, 599.9408, 699.3216, 799.5036, 899.1273, 999.5403, 1099.3807]

temp12k4: Temperament with 4 1/4-comma fifths
[91.4461, 193.1569, 294.8676, 386.3137, 498.2892, 589.7353, 696.5784, 793.1569, 889.7353, 996.5784, 1088.0245]

temp12p10: 1/10-Pyth. comma well temperament
[99.609, 199.218, 298.827, 398.436, 500.391, 597.654, 699.609, 799.218, 898.827, 998.436, 1098.045]

temp12p6: Modified 1/6-Pyth. comma temperament
[90.225, 196.09, 294.135, 392.18, 501.955, 590.225, 698.045, 792.18, 894.135, 1000.0, 1090.225]

temp12p6a: Alternating just and 1/6-Pyth. comma fifths
[98.045, 200.0, 298.045, 400.0, 498.045, 600.0, 698.045, 800.0, 898.045, 1000.0, 1098.045]

temp12p8: 1/8-Pyth. comma well temperament
[99.0225, 198.045, 297.0675, 396.09, 500.9775, 597.0675, 699.0225, 798.045, 897.0675, 999.0225, 1095.1125]

temp12rwt: [2 3 17 19] well temperament
[93.603, 198.5584, 297.513, 393.0896, 498.045, 596.9996, 701.955, 795.558, 894.5126, 996.09, 1095.0446]

temp12septendec: Scale with 18/17 steps
[98.9546, 197.9092, 296.8638, 395.8184, 494.773, 593.7276, 692.6821, 791.637, 890.591, 989.546, 1101.0454]

temp12w2b: The fifths on white keys beat twice the amount of fifths on black keys
[97.6474, 198.3769, 298.9448, 397.3537, 500.5291, 596.8668, 698.6373, 798.0353, 897.3737, 999.5048, 1096.6719]

temp7-5ebf: 7 equal beating fifths on white, 5 equal beating fifths on black
[70.7135, 168.0515, 313.3819, 339.4515, 513.9422, 551.0301, 680.5291, 796.0275, 850.5738, 1035.6586, 1023.815]

terrain: JI version of generated scale for 63/50 and 10/9 effectively 250047/250000 (landscape) tempering in 2.9/5.9/7 subgroup
[34.9756, 182.4037, 217.3793, 400.1085, 435.0841, 582.5122, 617.4878, 799.8915, 835.1926, 982.6207, 1017.5963]

tertiadia: Tertiadia 2048/2025 and 262144/253125 scale
[111.7313, 223.4626, 274.5824, 386.3137, 498.045, 609.7763, 701.955, 813.6863, 864.8061, 976.5374, 1088.2687]

tertiadie: First Tertiadie 262144/253125 and 128/125 scale
[111.7313, 223.4626, 274.5824, 386.3137, 498.045, 609.7763, 660.8961, 772.6274, 884.3587, 1037.1489, 1088.2687]

tetragam-di: Tetragam Dia2
[111.7313, 182.4037, 182.4037, 386.3137, 498.045, 609.7763, 701.955, 813.6863, 884.3587, 884.3587, 968.8259]

tetragam-enh: Tetragam Enharm.
[62.9609, 111.7313, 111.7313, 386.3137, 498.045, 582.5122, 701.955, 764.9159, 813.6863, 813.6863, 968.8259]

tetragam-hex: Tetragam/Hexgam
[62.9609, 203.91, 266.8709, 386.3137, 470.7809, 653.1846, 701.955, 764.9159, 884.3587, 968.8259, 1088.2687]

tetragam-py: Tetragam Pyth.
[90.225, 203.91, 203.91, 407.82, 498.045, 611.73, 701.955, 792.18, 905.865, 905.865, 996.09]

tetragam-slpe: Tetragam Slendro as 5-tET, Pelog-like pitches on C# E F# A B
[0.0, 240.0, 240.0, 111.7313, 480.0, 498.045, 720.0, 960.0, 701.955, 960.0, 813.6863]

tetragam-slpe2: Tetragam Slendro as 5-tET, Pelog-like pitches on C# E F# A B
[0.0, 240.0, 240.0, 156.0, 480.0, 312.0, 720.0, 720.0, 678.0, 960.0, 834.0]

tetragam-sp: Tetragam Septimal
[62.9609, 62.9609, 62.9609, 435.0841, 498.045, 582.5122, 701.955, 764.9159, 764.9159, 764.9159, 968.8259]

tetragam-un: Tetragam Undecimal
[53.2729, 150.6371, 150.6371, 347.4079, 498.045, 551.3179, 701.955, 755.2279, 852.5921, 852.5921, 1049.3629]

tetragam13: Tetragam (13-tET)
[92.308, 276.923, 276.923, 461.538, 461.538, 738.462, 738.462, 923.077, 923.077, 923.077, 1107.692]

tetragam5: Tetragam (5-tET)
[240.0, 240.0, 240.0, 240.0, 480.0, 480.0, 720.0, 960.0, 960.0, 960.0, 960.0]

tetragam7: Tetragam (7-tET)
[171.429, 171.429, 171.429, 342.857, 514.286, 514.286, 685.714, 857.143, 857.143, 857.143, 1028.571]

tetragam8: Tetragam (8-tET)
[150.0, 300.0, 300.0, 450.0, 450.0, 750.0, 750.0, 900.0, 900.0, 900.0, 900.0]

tetragam9a: Tetragam (9-tET) A
[133.333, 266.667, 266.667, 400.0, 533.333, 800.0, 800.0, 933.333, 933.333, 933.333, 1066.667]

tetragam9b: Tetragam (9-tET) B
[133.333, 133.333, 133.333, 266.667, 266.667, 666.667, 666.667, 800.0, 800.0, 800.0, 933.333]

thirds: Major and minor thirds parallellogram. Fokker block 81/80 128/125
[70.6724, 182.4037, 315.6413, 386.3137, 498.045, 568.7174, 701.955, 813.6863, 884.3587, 955.0311, 1129.3276]

thirteendene: Detempered 2.3.5.7.13 transversal of marveldene, hecate (225/224, 325/324, 385/384) version
[138.5727, 203.91, 315.6413, 435.0841, 519.5513, 636.6177, 701.955, 813.6863, 905.865, 1017.5963, 1137.0391]

thomas: Tuning of the Thomas/Philpott organ, Gereformeerde Kerk, St. Jansklooster
[122.48, 205.87, 315.6413, 412.71, 504.89, 621.51, 700.0013, 822.48, 907.82, 1009.76, 1119.55]

thrush12: Thrush[12] (126/125, 176/175) hobbit in the POTE tuning
[80.4358, 230.319, 310.7548, 391.1906, 498.0546, 578.4904, 701.9454, 808.8094, 889.2452, 969.681, 1119.5642]

tri12-1: 12-tone Tritriadic of 7:9:11
[17.5761, 87.6762, 347.4079, 364.9841, 417.508, 435.0841, 764.9159, 782.492, 852.5921, 870.1682, 1129.9]

tri12-2: 12-tone Tritriadic of 6:7:9
[203.91, 266.8709, 435.0841, 498.045, 533.7418, 701.955, 764.9159, 933.1291, 968.8259, 1031.7868, 1137.0391]

triangs13: The first 13 terms of the triangular number series, octave reduced
[53.2729, 203.91, 342.4827, 386.3137, 470.7809, 590.2237, 609.3536, 701.955, 937.6317, 968.8259, 1088.2687]

triaphonic_12: 12-tone Triaphonic Cycle, conjunctive form on 4/3, 5/4 and 6/5
[88.8007, 182.4037, 281.3583, 386.3137, 498.045, 586.8457, 680.4487, 779.4033, 884.3587, 983.3133, 1088.2687]

trost: Johann Caspar Trost, organ temperament (1677), from Ratte, p. 390
[96.5787, 206.8425, 296.5788, 400.0, 503.4212, 600.0, 696.5788, 793.1575, 903.4212, 1006.8425, 1089.7362]

trost-hg: Mark Lindley approximation (1988) of organ temperament attributed to Heinrich Gottfried Trost (1738)
[93.1575, 198.045, 297.0675, 396.09, 500.9775, 594.135, 699.0225, 792.18, 897.0675, 1001.955, 1095.1125]

tsuda13: Mayumi Tsuda's Harmonic-13 scale. 1/1=440 Hz
[128.2982, 138.5727, 359.4723, 454.2139, 563.3823, 636.6177, 745.7861, 840.5277, 910.7903, 1071.7018, 1183.433]

tuinstra: Organ tuning after Stef Tuinstra of organ in Bethelkerk, Bodegraven (2014)
[97.5563, 198.045, 298.5337, 396.09, 499.5113, 595.6013, 699.0225, 796.5788, 897.0675, 999.0225, 1095.1125]

tuners1: The Tuner's Guide well temperament no. 1 (1840)
[95.7597, 196.9975, 299.6697, 394.7398, 500.261, 595.9016, 698.9959, 797.7147, 896.3119, 1001.6247, 1095.5176]

tuners2: The Tuner's Guide well temperament no. 2 (1840)
[98.7726, 199.3785, 300.8497, 399.2506, 500.9518, 599.5634, 700.0144, 798.8947, 899.6041, 1001.1738, 1099.6648]

tuners3: The Tuner's Guide well temperament no. 3 (1840)
[98.3469, 199.8569, 300.7263, 398.7098, 499.8658, 598.1122, 699.5243, 800.3019, 899.6464, 1000.6384, 1098.7344]

ultimate12_nr1: Ultimate Proportional Synchronous Beating Well-Temperament by Ozan Yarman
[96.383, 199.4992, 302.3751, 394.2249, 501.3457, 597.5502, 697.5442, 800.4201, 897.5241, 1004.3301, 1097.9331]

ultimate12_nr2: Ultimate Proportional Synchronous Beating Well Temperament nr.2 by Ozan Yarman
[96.2044, 196.1985, 301.8465, 396.1783, 502.9843, 594.2494, 696.4503, 801.276, 894.2233, 1001.0293, 1094.6323]

ultimate12_nr3: Ultimate Synchronous Proportional Beating Well-Temperament nr.3 by Ozan Yarman
[94.0655, 195.0996, 297.9755, 395.0795, 500.2406, 593.1506, 699.0232, 796.0205, 893.1245, 999.9305, 1093.5335]

ultimate12_nr4a: Ultimate Synchronous Proportional Beating Well-Temperament nr.4a by Ozan Yarman
[96.2044, 197.1796, 299.0743, 391.801, 500.5164, 594.2494, 700.122, 798.1594, 894.2233, 1001.0293, 1092.2944]

ultimate12_nr4b: Ultimate Synchronous Proportional Beating Well-Temperament nr.4b by Ozan Yarman
[96.2044, 196.1985, 299.0743, 391.801, 502.9843, 594.2494, 700.122, 798.1594, 894.2233, 1001.0293, 1092.2944]

unimajor: A 2.3.11/7 subgroup scale
[80.537, 203.91, 294.135, 417.508, 498.045, 621.418, 701.955, 782.492, 905.865, 996.09, 1119.463]

unimajorpenta: Pentacircle (896/891) tempered unimajor in 152\259 tuning
[78.7645, 208.4942, 287.2587, 416.9884, 495.7529, 625.4826, 704.2471, 783.0116, 912.7413, 991.5058, 1121.2355]

vaisvil_harm3-26: Chris Vaisvil, octave reduced harmonic scale 3-26 with 4 skipped
[70.6724, 138.5727, 266.8709, 386.3137, 603.0004, 701.955, 795.558, 884.3587, 968.8259, 1049.3629, 1126.3193]

vaisvil_piezo: Chris Vaisvil, tuning for Piezo Psaltery (2018)
[74.0, 195.0, 300.0, 390.0, 475.0, 588.0, 691.0, 789.0, 894.0, 983.0, 1085.0]

val-werck: Vallotti-Young and Werckmeister III, 10 cents 5-limit lesfip scale
[87.1641, 192.0179, 296.8717, 384.0359, 502.6007, 582.3103, 696.7041, 792.0179, 887.3317, 1001.7255, 1081.4352]

valentine: Robert Valentine, tuning with primes 3 & 19, TL 7-2-2002
[93.603, 203.91, 297.513, 404.442, 498.045, 608.352, 701.955, 795.558, 902.487, 999.468, 1106.397]

vallotti: Vallotti & Young scale (Vallotti version) also known as Tartini-Vallotti (1754)
[94.135, 196.09, 298.045, 392.18, 501.955, 592.18, 698.045, 796.09, 894.135, 1000.0, 1090.225]

vallotti-broekaert: Version of Tartini-Vallotti with equal beating tempered fifths by Johan Broekaert (2016)
[93.9567, 195.5884, 297.8667, 392.0678, 501.7767, 592.0017, 696.9669, 795.9117, 893.0889, 999.8217, 1090.0467]

vallotti2: Francesco Antonio Vallotti temperament, 1/6-comma
[95.7631, 196.7412, 299.6731, 393.4825, 501.6294, 593.8081, 698.3706, 797.7181, 895.1119, 1001.6281, 1091.8531]

vallotti3: modified Vallotti temperament, 1/6 P
[98.045, 200.0, 301.955, 396.09, 501.955, 596.09, 698.045, 800.0, 898.045, 1003.91, 1098.045]

velde_ji: Marcel de Velde, 12 tone JI scale (2011)
[93.603, 203.91, 297.513, 386.3137, 498.045, 590.2237, 701.955, 795.558, 905.865, 996.09, 1088.2687]

veroli: Claudio di Veroli's well temperament (1978)
[98.09, 199.45, 299.18, 398.91, 500.27, 598.36, 699.73, 798.63, 899.18, 999.73, 1098.63]

veroli-ord: Tempérament ordinaire after Veroli, W.Th. Meister, 1991, p. 126
[80.935, 193.1569, 288.27, 386.3137, 498.045, 580.935, 696.5784, 782.89, 889.7353, 994.135, 1082.8921]

veroli1: Claudio di Veroli Bach temperament I (2009)
[96.09, 196.09, 300.0, 394.135, 501.955, 594.135, 698.045, 798.045, 896.09, 1001.955, 1094.135]

veroli2: Claudio di Veroli Bach temperament II (2009)
[96.09, 196.09, 300.0, 394.135, 501.955, 594.135, 698.045, 800.0, 896.09, 1001.955, 1094.135]

victor_eb: Equal beating Victorian piano temperament, interpr. by Bill Bremmer (improved)
[95.4369, 197.059, 299.3469, 394.2189, 498.045, 593.4819, 699.3119, 797.3919, 896.203, 998.5643, 1096.1739]

victorian: Form of Victorian temperament (1885)
[96.0, 198.0, 298.0, 393.0, 500.0, 595.0, 700.0, 797.0, 895.0, 999.0, 1094.0]

vogelh_b: Harald Vogel's temperament, van Eeken organ, Immanuelkerk, Bunschoten (1992). Memorial Chapel, Stanford (1958)
[94.917, 194.526, 294.135, 389.052, 502.737, 588.27, 697.263, 792.18, 891.789, 996.09, 1086.315]

vogelh_fisk: Modified meantone tuning of Fisk organ in Memorial Church at Stanford
[80.1242, 194.526, 309.5795, 389.052, 502.737, 583.5454, 697.263, 776.7029, 891.789, 1006.1582, 1086.315]

vogelh_hamburg: Harald Vogel's temperament for the Schnitger organ in St. Jakobi, Hamburg (1993)
[87.8775, 195.3075, 296.0887, 390.615, 502.3463, 585.9225, 697.6537, 789.8325, 892.9612, 1000.3913, 1088.2687]

vogelh_hmean: Harald Vogel hybrid meantone (1984)
[95.7642, 200.782, 309.5795, 401.564, 502.737, 599.1854, 700.391, 792.3429, 901.173, 1006.1582, 1101.955]

wallis: John Wallis, gamut, Oxford (June 1698). Mode of Andreas Reinhard's Monochord
[88.8007, 182.4037, 281.3583, 386.3137, 498.045, 596.9996, 701.955, 790.7557, 884.3587, 996.09, 1095.0446]

wang-pho: Wang Pho, Pythagorean-type Monochord (10th cent.)
[111.2184, 203.91, 313.3345, 403.2275, 516.0923, 609.2634, 701.955, 812.1481, 903.7023, 1014.1373, 1106.397]

wegscheider: Kristian Wegscheider, Bach-temperament after "H.C. Snerha" (2003). A=416 Hz
[92.0396, 192.8141, 296.222, 388.401, 500.132, 590.0846, 697.308, 793.9946, 890.6125, 998.177, 1088.1296]

wegscheider2: Kristian Wegscheider, temperament for organ in Reinfeld, 1/6 P
[98.045, 200.0, 301.955, 396.09, 501.955, 596.09, 698.045, 800.0, 898.045, 1003.91, 1094.135]

wegscheider_1a: Kristian Wegscheider, temperament 1A, equal beating with two pure fifths, Tuning Methods in Organbuilding
[97.3336, 198.6529, 298.2638, 397.8765, 500.4055, 597.6101, 698.8027, 796.3088, 897.7976, 1000.2188, 1097.3269]

weingarten: Gabler organ in Weingarten (1750). 1/11-(synt.+Pyth. comma) meantone
[85.0701, 195.7343, 306.3985, 391.4686, 502.1328, 587.2029, 697.8672, 782.9372, 893.6015, 1004.2657, 1089.3358]

weingarten2: Temperament of Gabler organ in Weingarten after restauration (1983)
[95.1125, 196.09, 301.4663, 394.135, 499.0225, 591.2025, 698.045, 798.045, 895.1125, 1001.4662, 1091.2025]

wendell1: Robert Wendell's Natural Synchronous well-temperament (2003)
[94.168, 198.171, 298.078, 393.68, 498.045, 597.59, 699.492, 796.123, 895.757, 1000.033, 1095.635]

wendell1r: Rational version of wendell1.scl by Gene Ward Smith
[94.2002, 198.2502, 298.1102, 393.7369, 498.045, 597.6469, 699.5752, 796.1552, 895.8221, 1000.0652, 1095.6919]

wendell2: Robert Wendell's Very Mild Synchronous well-temperament (2003)
[94.931, 198.797, 298.841, 394.1136, 498.445, 598.024, 700.058, 796.886, 895.759, 1000.796, 1096.069]

wendell2p: 1/5P version of wendell2.scl, Op de Coul
[94.917, 199.218, 298.827, 393.744, 498.045, 597.654, 701.955, 796.872, 896.481, 1000.782, 1095.699]

wendell3: Robert Wendell Modern Well (2002)
[96.0783, 197.06, 298.0417, 394.12, 500.005, 595.0967, 699.015, 797.06, 895.105, 999.0233, 1094.115]

wendell4: Robert Wendell's ET equivalent (2002)
[96.485, 199.61, 298.435, 399.22, 498.045, 598.83, 697.655, 798.44, 897.265, 1000.39, 1096.875]

wendell5: Robert Wendell Synchronous Victorian (2002)
[92.185, 195.31, 296.095, 390.62, 498.045, 594.53, 697.655, 794.14, 892.965, 998.05, 1092.575]

wendell6: Robert Wendell's RPW Synchronous well (2002)
[94.51, 197.65, 298.425, 392.94, 498.04, 596.855, 699.345, 796.47, 895.295, 1000.385, 1094.895]

wendell7: Robert Wendell Tweaked Synchronous Well
[93.825, 197.54, 297.745, 392.94, 498.045, 596.86, 698.815, 795.79, 894.995, 999.71, 1094.905]

werck3: Andreas Werckmeister's temperament III (the most famous one, 1681)
[90.225, 192.18, 294.135, 390.225, 498.045, 588.27, 696.09, 792.18, 888.27, 996.09, 1092.18]

werck3_eb: Werckmeister III equal beating version, 5/4 beats twice 3/2
[90.225, 193.293, 294.135, 391.767, 498.045, 588.27, 697.413, 792.18, 889.812, 996.09, 1093.772]

werck3_ebm: Harmonic equal-beating meta-version of Werckmeister III by Jacques Dudon (2006)
[90.225, 192.2706, 294.135, 390.2672, 498.045, 588.27, 696.0519, 792.18, 888.3122, 996.09, 1092.2222]

werck3_mim: Werckmeister III, 10 cents 5-limit mimafip scale
[90.225, 192.18, 294.135, 384.36, 503.91, 584.3587, 696.09, 786.315, 888.27, 1000.0013, 1080.45]

werck3_mod: Modified Werckmeister III with B between E and F#, Nijsse (1997), organ Soest
[90.225, 192.18, 294.135, 390.225, 498.045, 588.27, 696.09, 792.18, 888.27, 996.09, 1089.2475]

werck3_mod2: Modified Werckmeister III, Orgelbau Rohlf (2015)
[96.09, 194.135, 300.0, 396.09, 503.91, 594.135, 696.09, 798.045, 894.135, 1001.955, 1092.18]

werck3_turck: Daniel Gottlob Türck's 1806 Werckmeister III compiled by Andreas Sparschuh, TL 28-05-2010
[90.225, 195.1804, 294.135, 387.738, 498.045, 588.27, 701.6911, 792.18, 885.783, 996.09, 1089.693]

werck4: Andreas Werckmeister's temperament IV
[82.405, 196.09, 294.135, 392.18, 498.045, 588.27, 694.135, 784.36, 890.225, 1003.91, 1086.315]

werck5: Andreas Werckmeister's temperament V
[96.09, 203.91, 300.0, 396.09, 503.91, 600.0, 701.955, 792.18, 900.0, 1001.955, 1098.045]

werck6: Andreas Werckmeister's "septenarius" tuning VI, D is probably erroneous
[90.6612, 186.3339, 298.0652, 395.1692, 498.045, 594.9225, 697.5442, 792.6162, 893.2141, 1000.0202, 1097.1242]

werck6_cor: Corrected Septenarius with D string length=175 by Tom Dent (2006)
[90.6612, 196.1985, 298.0652, 395.1692, 498.045, 594.9225, 697.5442, 792.6162, 893.2141, 1000.0202, 1097.1242]

werck6_dup: Andreas Werckmeister's VI in the interpretation by Dupont (1935)
[90.225, 187.153, 297.486, 394.414, 498.045, 594.973, 698.604, 792.18, 892.459, 999.441, 1096.369]

werck_cl5: Werckmeister Clavier temperament (Nothw. Anm.) Poletti reconstr. 1/5-comma
[83.5762, 195.3075, 293.5913, 390.615, 502.3463, 585.9225, 697.6537, 786.7913, 892.9612, 1000.3913, 1088.2687]

werck_cl6: Werckmeister Clavier temperament (Nothw. Anm.) Poletti reconstr. 1/6-comma
[88.5943, 196.7412, 295.6744, 393.4825, 501.6294, 590.2237, 698.3706, 791.6744, 895.1119, 999.6744, 1091.8531]

werck_puzzle: From Hypomnemata Musica, 1697, p. 49, 1/1=192, fifths tempered superparticular
[70.6724, 187.8054, 274.5824, 386.3137, 491.2691, 577.352, 689.8906, 772.6274, 884.3587, 984.2148, 1088.2687]

werckmeisterIV_variant: Werckmeister IV with 1/3 syntonic comma temperings
[85.01, 196.7412, 294.135, 393.4825, 498.045, 590.2237, 694.7862, 785.0112, 891.5275, 1003.2588, 1088.2687]

werckmeisterIV_variant_c: Werckmeister IV variation, 1/3-SC, all intervals in cents
[85.01, 196.7412, 294.135, 393.4825, 498.045, 590.2237, 694.7862, 785.0112, 891.5275, 1003.2588, 1088.2687]

wicks_eb: Mark Wicks' equal beating temperament for organs (1887)
[96.7156, 198.7556, 295.7517, 398.071, 495.3178, 597.8867, 699.7479, 796.5835, 898.743, 995.8464, 1098.2725]

wiegleb: Wiegleb's organ temperament (1790)
[91.2025, 194.135, 295.1125, 391.2025, 499.0225, 589.2475, 697.0675, 793.1575, 891.2025, 997.0675, 1090.225]

wiegleb-book: Werkstattbuch Wiegleb, organ temperament, 2nd half 18th cent., from Ratte, p. 406
[92.18, 196.09, 296.09, 394.135, 500.0, 590.225, 698.045, 794.135, 894.135, 998.045, 1092.18]

wier_cl: Danny Wier, ClownTone (2003)
[93.603, 182.4037, 266.8709, 347.4079, 498.045, 603.0004, 701.955, 795.558, 884.3587, 968.8259, 1049.3629]

wier_j: Danny Wier, 8 1/4P, 4 -1/4P temperament
[72.63, 192.18, 276.54, 384.36, 492.18, 576.54, 696.09, 768.72, 888.27, 984.36, 1080.45]

wiese1: Christian Ludwig Gustav von Wiese's 1/2P-comma temperament no. 1 (1793)
[90.225, 203.91, 294.135, 407.82, 498.045, 599.9724, 701.955, 792.18, 905.865, 996.09, 1109.775]

wiese3: Christian Ludwig Gustav von Wiese's 1/2P-comma temperament no. 3 (1793). Also Grammateus (1518) according to Ratte, p. 249
[101.955, 203.91, 305.865, 407.82, 498.045, 600.0, 701.955, 803.91, 905.865, 996.09, 1109.775]

wilson_class: Wilson's Class Scale, 9 July 1967
[70.6724, 196.1985, 266.8709, 386.3137, 498.045, 582.5122, 653.1846, 813.6863, 884.3587, 968.8259, 1080.5572]

wilson_gh50: Golden Horagram nr.50: 7phi+2 / 17phi+5
[59.7307, 119.4614, 275.8384, 335.5691, 491.9461, 551.6768, 611.4076, 767.7846, 827.5153, 983.8923, 1043.623]

wilson_hexflank: Hexany Flanker, 7-limit, from Wilson
[35.6968, 231.1741, 266.8709, 386.3137, 498.045, 617.4878, 653.1846, 848.6619, 884.3587, 968.8259, 1115.5328]

wronski: Wronski's scale, from Jocelyn Godwin, "Music and the Occult", p. 105.
[104.9554, 203.91, 287.3591, 386.3137, 498.045, 603.0004, 701.955, 806.9104, 905.865, 989.3141, 1101.0454]

wurschmidt: Würschmidt's normalised 12-tone system
[92.1787, 203.91, 315.6413, 407.82, 519.5513, 590.2237, 701.955, 794.1337, 905.865, 1017.5963, 1088.2687]

yarman-36a_12core: 12-tone Modified Meantone Temperament core (Layer I) of Yarman36a_nr1, A=438.410457150843
[97.6406, 198.7466, 303.6377, 396.0776, 501.3562, 594.1186, 699.744, 801.6828, 896.7572, 1001.8805, 1094.5136]

yarman12-135: 12 out of 135-tET by Ozan Yarman
[88.9366, 195.6605, 302.3845, 391.3211, 506.2945, 595.2311, 701.955, 790.8916, 897.6155, 1004.3395, 1093.2761]

yarman12-159: 12 out of 159-tET by Ozan Yarman
[90.566, 196.2264, 301.8868, 392.4528, 498.045, 588.6793, 701.955, 792.4528, 898.1132, 1003.7736, 1094.3396]

yarman_saba: Saba by Ozan Yarman
[150.6371, 182.4037, 203.91, 289.2097, 417.508, 435.0841, 701.955, 787.2547, 991.1647, 1119.463, 1137.0391]

yasser_diat: Yasser's Supra-Diatonic, the flat notes are V,W,X,Y,and Z
[126.3158, 189.4737, 315.7895, 378.9474, 505.2632, 631.5789, 694.7368, 821.0526, 884.2105, 1010.5263, 1073.6842]

yasser_ji: Yasser's just scale, 2 Yasser hexads, 121/91 apart
[133.81, 203.91, 262.1082, 386.3137, 493.2823, 551.3179, 697.1923, 840.5277, 879.596, 968.8259, 1044.6003]

yekta: Rauf Yekta's 12-tone tuning suggested in 1922 Lavignac Music Encyclopedia
[111.7313, 203.91, 315.6413, 386.3137, 498.045, 609.7763, 701.955, 813.6863, 884.3587, 1017.5963, 1129.3276]

yekta-cataclysmic: yekta tempered in 13-limit POTE-tuned cataclysmic
[112.6035, 204.4326, 317.036, 385.1802, 497.7837, 610.3872, 702.2163, 814.8198, 882.9639, 1019.2523, 1131.8558]

young: Thomas Young well temperament (1807), also Luigi Malerbi nr.2 (1794)
[90.225, 196.09, 294.135, 392.18, 498.045, 588.27, 698.045, 792.18, 894.135, 996.09, 1090.225]

young-lm_guitar: LaMonte Young, tuning of For Guitar '58. 1/1 March '92, inv.of Mersenne lute 1
[111.7313, 182.4037, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 813.6863, 884.3587, 1017.5963, 1088.2687]

young-lm_piano: LaMonte Young's Well-Tuned Piano
[176.6459, 203.91, 239.6068, 470.7809, 443.5168, 674.6909, 701.955, 737.6518, 968.8259, 941.5618, 1172.7359]

young-sorge: Young-Sorge temperament, 1/6 P
[94.135, 196.09, 298.045, 396.09, 501.955, 592.18, 698.045, 796.09, 898.045, 1000.0, 1094.135]

young1: Thomas Young well temperament no.1 (1800), 1/12 and 3/16 synt. comma
[93.856, 195.844, 297.7911, 391.6889, 499.8695, 591.9314, 697.9259, 795.8293, 893.7327, 999.7564, 1091.8214]

young2: Thomas Young well temperament no.2 (1799)
[94.135, 196.09, 298.045, 392.18, 500.0, 592.18, 698.045, 796.09, 894.135, 1000.0, 1092.18]

yugo_bagpipe: Yugoslavian Bagpipe
[99.0, 202.0, 362.0, 463.0, 655.0, 754.0, 861.0, 949.0, 991.0, 1047.0, 1129.0]

zapf: Michael Zapf Bach temperament (2001)
[100.2106, 196.1985, 300.4904, 395.9816, 501.1619, 599.8904, 697.3322, 799.9901, 894.0266, 1000.4999, 1097.9403]

zapf-dent: Thomas Dent, theoretical Zapf temperament, 1/13P (2005)
[101.0527, 196.6915, 301.3535, 396.9923, 501.6542, 600.9023, 698.3458, 801.2031, 895.0373, 1001.5039, 1098.9473]

zeta12: Margo Schulter's Zeta Centauri tuning inspired by Kraig Grady's Centaur
[138.5727, 203.91, 266.8709, 347.4079, 498.045, 636.6177, 701.955, 764.9159, 840.5277, 968.8259, 1049.3629]

zwolle: Henri Arnaut De Zwolle. Pythagorean on G flat.
[90.225, 203.91, 294.135, 407.82, 498.045, 588.27, 701.955, 792.18, 905.865, 996.09, 1109.775]

zwolle2: Henri Arnaut De Zwolle's modified meantone tuning (c. 1440)
[76.049, 193.1569, 303.096, 386.3137, 503.4216, 579.4706, 696.5784, 772.6274, 889.7353, 1003.2588, 1082.8921]