12-50: 12 out of 50-tET, meantone Eb-G#
[72.0, 192.0, 312.0, 384.0, 504.0, 576.0, 696.0, 768.0, 888.0, 1008.0, 1080.0]
12-79mos159et: 12-tones out of 79 MOS 159ET, Splendid Beat Rates Based on Simple Frequencies version, C=262hz
[91.6892, 197.5352, 302.3751, 392.9089, 498.045, 589.3425, 701.955, 792.0767, 897.524, 1003.0965, 1093.5469]
12-yarman24a: 12-tones out of Yarman24a, circulating in the style of Rameau's Modified Meantone Temperament
[84.36, 192.18, 292.18, 386.3137, 498.045, 584.0791, 696.09, 788.27, 888.27, 996.09, 1088.2687]
12-yarman24b: 12-tones out of Yarman24b, circulating in the style of Rameau's Modified Meantone Temperament
[84.36, 192.18, 292.18, 386.3137, 498.045, 584.3587, 696.09, 788.27, 888.27, 996.09, 1088.2687]
12-yarman24c: 12-tones out of Yarman24c, circulating in the style of Rameau's Modified Meantone Temperament
[85.0589, 191.7708, 292.413, 383.5415, 498.045, 581.3819, 695.8854, 788.736, 887.6561, 996.09, 1085.4965]
12-yarman24d: 12-tones out of Yarman24d, circulating in the style of Rameau's Modified Meantone Temperament
[83.3298, 190.8486, 291.8366, 381.6971, 498.045, 579.0764, 695.4243, 787.5832, 886.2729, 996.09, 1083.6521]
abell1: Ross Abell's French Baroque Meantone 1, a'=520 Hz
[78.0, 194.0, 271.0, 387.0, 464.0, 581.0, 697.0, 775.0, 891.0, 968.0, 1084.0]
abell2: Ross Abell's French Baroque Meantone 2, a'=520 Hz
[92.0, 206.0, 287.0, 402.0, 494.0, 596.0, 704.0, 789.0, 906.0, 989.0, 1099.0]
abell3: Ross Abell's French Baroque Meantone 3, a'=520 Hz
[92.002, 199.0034, 283.0002, 398.0001, 504.0013, 594.003, 702.0017, 787.3588, 901.0017, 985.0027, 1096.0018]
abell4: Ross Abell's French Baroque Meantone 4, a'=520 Hz
[86.0, 196.0, 284.0, 392.0, 484.0, 588.0, 698.0, 784.0, 894.0, 984.0, 1090.0]
abell5: Ross Abell's French Baroque Meantone 5, a'=520 Hz
[105.0, 213.0, 303.0, 408.0, 501.0, 606.0, 716.0, 804.0, 909.0, 1002.0, 1107.0]
abell6: Ross Abell's French Baroque Meantone 6, a'=520 Hz
[99.0, 198.0, 303.0, 402.0, 501.0, 600.0, 699.0, 798.0, 903.0, 1002.0, 1101.0]
abell7: Ross Abell's French Baroque Meantone 7, a'=520 Hz
[102.0, 204.0, 294.0, 396.0, 498.0, 600.0, 702.0, 804.0, 894.0, 996.0, 1098.0]
abell8: Ross Abell's French Baroque Meantone 8, a'=520 Hz
[104.0, 206.0, 302.0, 400.0, 504.0, 606.0, 702.0, 800.0, 904.0, 1006.0, 1102.0]
abell9: Ross Abell's French Baroque Meantone 9, a'=520 Hz
[93.0, 198.0, 292.0, 403.0, 497.0, 596.0, 700.0, 789.0, 900.0, 994.0, 1100.0]
artusi: Clavichord tuning of Giovanni Maria Artusi (1603). 1/4-comma with mean semitones
[96.578, 193.157, 289.735, 386.3137, 503.422, 600.0, 696.578, 793.157, 889.735, 986.314, 1082.892]
barnes: John Barnes' temperament (1977) made after analysis of Wohltemperierte Klavier, 1/6 P
[94.135, 196.09, 298.045, 392.18, 501.955, 592.18, 698.045, 796.09, 894.135, 1000.0, 1094.135]
barnes2: John Barnes' temperament (1971), 1/8 P
[96.09, 198.045, 297.0675, 396.09, 500.9775, 594.135, 699.0225, 798.045, 897.0675, 999.0225, 1095.1125]
barton: Jacob Barton, tetratetradic scale on 6:7:9:11
[116.2338, 150.6371, 203.91, 266.8709, 417.508, 551.3179, 701.955, 852.5921, 898.7259, 968.8259, 1049.3629]
baumeister: In 1988 observed temperament of organ in Maihingen by Johann Martin Baumeister (1737)
[84.9465, 199.218, 306.4515, 386.706, 500.9775, 582.9915, 701.955, 781.0365, 896.481, 994.3305, 1085.7285]
bedos: Temperament of Dom François Bédos de Celles (1770), after M. Tessmer
[74.9737, 191.0062, 311.34, 386.3137, 502.3463, 577.3199, 697.6537, 772.6274, 888.66, 1008.9938, 1083.9675]
bellingwolde: Current 1/6-P. comma mod.mean of Freytag organ in Bellingwolde. Ortgies,2002
[90.225, 196.09, 301.955, 392.18, 501.955, 588.27, 698.045, 796.09, 894.135, 1000.0, 1090.225]
bellingwolde_org: Original tuning of the Freytag organ in Bellingwolde
[90.225, 196.09, 301.955, 392.18, 501.955, 588.27, 701.955, 796.09, 894.135, 1000.0, 1094.135]
bemetzrieder2: Anton Bemetzrieder temperament nr. 2 (1808), is Vallotti in F#
[105.865, 203.91, 301.955, 407.82, 498.045, 607.82, 701.955, 803.91, 905.865, 1000.0, 1109.775]
bendeler: J. Ph. Bendeler well temperament
[90.225, 194.63, 294.135, 392.45, 498.045, 588.27, 701.955, 792.18, 890.495, 996.09, 1094.405]
bendeler-b: Die Brüche nach Bendeler, Jerzy Erdmann: Ein Rechenmodell für historische Mensurationsmethoden, p. 342
[90.225, 187.5891, 294.135, 391.4991, 498.045, 588.27, 692.7732, 792.18, 889.5441, 996.09, 1093.4541]
bermudo2: Temperament of Fr. Juan Bermudo, interpr. of Franz Josef Ratte: Die Temperatur der Clavierinstrumente, p. 227
[100.0, 200.0, 294.135, 400.0, 498.045, 598.045, 701.955, 801.955, 901.955, 996.09, 1101.955]
billeter: Organ well temperament of Otto Bernhard Billeter
[93.1575, 198.045, 297.0675, 392.18, 500.9775, 591.2025, 699.0225, 795.1125, 895.1125, 999.0225, 1092.18]
breed-bluesji: 7-limit JI version of Graham Breed's Blues scale
[133.2376, 182.4037, 386.3137, 449.2746, 498.045, 653.1846, 680.4487, 835.1926, 884.3587, 947.3196, 1151.2296]
breedball3: Third Breed ball around 49/40-7/4
[35.6968, 84.4672, 119.4428, 351.3381, 386.3137, 582.5122, 617.4878, 701.955, 737.6518, 933.1291, 968.8259]
breedt2: Graham Breed's 1/5 P temperament, TL 10-06-99
[94.917, 199.218, 298.827, 393.744, 502.737, 592.962, 701.955, 796.872, 896.481, 1000.782, 1095.699]
breedt3: Graham Breed's other 1/4 P temperament, TL 10-06-99
[96.09, 198.045, 300.0, 396.09, 503.91, 594.135, 701.955, 798.045, 894.135, 1001.955, 1092.18]
burt4: W. Burt's 13diatharm #4, see his post 3/30/94 in Tuning Digest #57
[128.2982, 247.7411, 359.4723, 464.4277, 563.3823, 656.9854, 745.7861, 910.7903, 987.7467, 1061.4273, 1132.0998]
cantonpenta: Freivald's Canton scale in 13-limit pentacircle (351/350 and 364/363) temperament, 271-tET
[128.4133, 208.1181, 287.8229, 416.2362, 495.941, 575.6458, 704.059, 783.7638, 912.1771, 991.8819, 1071.5867]
carlos_harm: Carlos Harmonic & Ben Johnston's scale of 'Blues' from Suite f.micr.piano (1977) & David Beardsley's scale of 'Science Friction'
[104.9554, 203.91, 297.513, 386.3137, 470.7809, 551.3179, 701.955, 840.5277, 905.865, 968.8259, 1088.2687]
carlos_super: Carlos Super Just
[104.9554, 203.91, 315.6413, 386.3137, 498.045, 551.3179, 701.955, 840.5277, 884.3587, 968.8259, 1088.2687]
cauldron: Circulating temperament with two pure 9/7 thirds and 7 meantone, 2 slightly wide, 3 superpyth fifths
[70.3135, 189.2049, 291.9037, 378.4098, 505.3976, 567.6147, 694.6024, 781.1086, 883.8073, 1002.6988, 1073.0122]
chahargah: Chahargah in C
[100.0, 140.0, 300.0, 386.0, 498.0, 590.0, 702.0, 800.0, 840.0, 1000.0, 1100.0]
chalmers_ji1: Based loosely on Wronski's and similar JI scales, May 2, 1997.
[104.9554, 203.91, 297.513, 386.3137, 498.045, 603.0004, 701.955, 795.558, 884.3587, 999.468, 1088.2687]
chalmers_ji2: Based loosely on Wronski's and similar JI scales, May 2, 1997.
[104.9554, 203.91, 297.513, 386.3137, 498.045, 603.0004, 701.955, 806.9104, 905.865, 999.468, 1088.2687]
chalmers_ji3: 15 16 17 18 19 20 21 on 1/1, 15-20 on 3/2, May 2, 1997. See other scales
[111.7313, 216.6867, 315.6413, 409.2443, 498.045, 582.5122, 701.955, 813.6863, 918.6417, 1017.5963, 1111.1993]
chalmers_ji4: 15 16 17 18 19 20 on 1/1, same on 4/3, + 16/15 on 16/9
[111.7313, 216.6867, 315.6413, 409.2443, 498.045, 609.7763, 714.7317, 813.6863, 907.2893, 996.09, 1107.8213]
chin_lu: Chinese Lü scale by Huai Nan zi, Han era. Père Amiot 1780, Kurt Reinhard
[98.9546, 203.91, 315.6413, 394.3473, 498.045, 608.352, 701.955, 800.9096, 905.865, 1017.5963, 1106.397]
chin_lu2: Chinese Lü (Lushi chunqiu, by Lu Buwei). Mingyue: Music of the billion, p.67
[113.685, 203.91, 317.595, 407.82, 521.505, 611.73, 701.955, 815.64, 905.865, 1019.55, 1109.775]
chin_lu3: Chinese Lü scale by Ho Ch'êng-T'ien, reported in Sung Shu (500 AD)
[101.0, 200.0, 297.0, 398.0, 493.0, 596.0, 699.0, 791.0, 897.0, 985.0, 1092.0]
chin_lu3a: Chinese Lü scale by Ho Ch'êng-T'ien, calc. basis is "big number" 177147
[99.236, 199.5492, 296.7185, 398.0235, 492.8796, 594.1477, 699.0512, 790.9393, 896.0588, 984.8689, 1090.4947]
classr: Marvel projection to the 5-limit of class
[92.1787, 162.8511, 315.6413, 386.3137, 478.4924, 590.2237, 701.955, 772.6274, 905.865, 976.5374, 1088.2687]
cons15: Set of intervals with num + den <= 15 not exceeding 2/1
[231.1741, 266.8709, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 968.8259, 1017.5963]
couperin_org: F. Couperin organ temperament (1690), from C. di Veroli, 1985
[76.049, 193.1569, 297.1029, 386.3137, 503.4216, 579.4706, 696.5784, 783.3806, 889.7353, 1006.8431, 1082.8921]
dan_seman: Semantix-Semantic, 5-limit, common tones to Semantic-36 and Semantix-36 with different A
[133.2376, 203.91, 337.1476, 364.8074, 498.045, 568.7174, 701.955, 835.1926, 862.8524, 1039.1026, 1066.7624]
david7: Gary David's Constant Structure (1967). A mode of Fokker's 7-limit scale
[111.7313, 203.91, 315.6413, 435.0841, 498.045, 582.5122, 701.955, 813.6863, 933.1291, 1017.5963, 1080.5572]
de_caus: De Caus (a mode of Ellis's duodene) (1615)
[70.6724, 182.4037, 274.5824, 386.3137, 498.045, 568.7174, 701.955, 772.6274, 884.3587, 996.09, 1088.2687]
dent: Tom Dent, well temperament with A=421 Hz and integer Hz beat rates from A
[97.2294, 198.5371, 300.0523, 393.1974, 499.7685, 595.2744, 699.6544, 798.0973, 895.3594, 999.105, 1093.3194]
dent-yn-rwt: Tom Dent's Young-Neidhardt well-temperament (rationalized by George Secor)
[92.058, 196.0675, 295.968, 392.1724, 499.878, 592.1788, 698.0382, 794.013, 894.1122, 997.923, 1092.1767]
dudon_12_of_19-ht: 12 of 19-tones harmonic temperament, from 27 to 35
[66.0496, 191.0383, 315.6413, 378.6022, 505.2435, 568.7174, 695.5311, 764.9159, 884.3587, 1006.8765, 1080.5572]
dudon_19-l_rocky_hwt: 19-limit well-temperament, C to B achieving eq-b of bluesy DEG-type chords (2005)
[90.225, 195.1804, 294.135, 387.738, 498.045, 588.27, 699.5786, 792.18, 885.783, 996.09, 1086.315]
dudon_3-limit_with429: cycle of 10 pure fourths (4/3) from D ending in 429/256
[90.225, 203.91, 294.135, 384.36, 498.045, 588.27, 701.955, 792.18, 893.8006, 996.09, 1086.315]
dudon_aka: Cylf-scale (Baka sequence- pentatonic Slendro plus pure fifths)
[15.5269, 235.8468, 246.701, 479.2271, 488.6616, 498.045, 717.4819, 729.8039, 948.656, 977.2721, 1190.6166]
dudon_aksand: Fractal Aksaka - c sequence (x^2 - x = 1/4), 16:20:24:29:35, plus 163
[1200.0, 327.6222, 1527.6222, 498.045, 1698.045, 653.1846, 1853.1846, 884.3587, 2084.3587, 916.5188, 2116.5188]
dudon_aluna: Chromatic scale based on F25, with turkish 31/25 segahs and many different thirds
[117.133, 196.1985, 308.4127, 372.4081, 500.2077, 607.0691, 701.955, 813.6863, 887.8177, 998.2527, 1074.3631]
dudon_amlak: Amlak recurrent sequence (x^2 = x + 1/3), as a matrix for Ethiopian scales
[0.0, 292.7107, 297.513, 311.8406, 592.2474, 608.352, 698.1543, 701.955, 790.7557, 1103.3888, 1106.397]
dudon_are-are_tapping: 'Are'are tapping bamboo tubes as collected by Hugo Zemp in 1977, JI interpretation
[1200.0, 255.5925, 1455.5925, 478.2593, 1678.2593, 675.5234, 1875.5234, 840.5277, 2040.5277, 1034.9958, 2234.9958]
dudon_are-are_women1: 'Are'are women songs as collected by Hugo Zemp in 1977, JI interpretation (2009)
[189.0495, 187.8054, 364.5369, 371.8263, 498.045, 511.5177, 695.9333, 701.955, 884.3587, 1064.0553, 1068.9251]
dudon_are-are_women2: 'Are'are women songs as collected by Hugo Zemp in 1977, JI interpretation (Dudon 2009)
[182.4037, 193.1903, 366.9701, 376.6689, 498.045, 502.5476, 701.955, 869.8713, 884.3587, 1068.9251, 1075.397]
dudon_armadillo: Triple equal-beating sequence from C to B, optimal major chords on white keys
[90.3162, 194.5772, 294.2262, 389.1038, 498.1336, 588.3612, 697.2949, 792.2712, 891.8468, 996.1735, 1086.4062]
dudon_aulos: Double clarinet -c version of Ptolemy's Diatonon Homalon
[150.6371, 155.1396, 315.6413, 322.1866, 498.045, 0.0, 701.955, 0.0, 852.5921, 1017.5963, 1018.6889]
dudon_baka: Baka typical semifourth pentatonic, can also be accepted as a circular Slendro
[231.1741, 241.5719, 483.0818, 483.0818, 487.5843, 718.7584, 718.7584, 953.8627, 953.8627, 1185.0368, 1197.0177]
dudon_bala_ribbon: Parizekmic scale based on a double Bala sequence
[70.6724, 203.91, 315.6413, 454.2139, 498.045, 561.7786, 701.955, 813.6863, 952.2589, 1017.5963, 1156.1689]
dudon_balasept-above: 5.7.13.15 tuning based on a single Balasept sequence
[128.5558, 248.2219, 377.6358, 454.2139, 498.045, 625.7635, 701.955, 873.5045, 952.2589, 1080.5572, 1156.1689]
dudon_balasept-under: 5.7.13.15.21 tuning based on a single Balasept sequence
[84.4672, 248.2219, 333.5817, 454.2139, 498.045, 582.5122, 701.955, 831.6267, 952.2589, 1080.5572, 1156.1689]
dudon_bambara: Typical pentatonic balafon ceremonial tuning from Mali or Burkina Faso
[0.0, 222.995, 222.995, 488.499, 488.499, 488.499, 711.4487, 711.4487, 934.4885, 934.4885, 1200.0]
dudon_bayati_in_d: Bayati (or Husayni) maqam in D
[6.7759, 210.6859, 349.2585, 365.8255, 508.1989, 523.3189, 708.7309, 712.1089, 912.6409, 1051.2135, 1054.9088]
dudon_bhatiyar: Early morning North indian raga, a modelisation based on Amlak 57
[88.8007, 98.5788, 386.3137, 404.442, 498.045, 586.8457, 701.955, 894.5126, 902.487, 1090.2924, 1106.397]
dudon_bhavapriya: Bhavapriya (South indian, prati madhyama mela # 44) or Bhavani (North indian)
[104.9554, 111.3086, 297.513, 314.5138, 590.2237, 595.026, 701.955, 806.9104, 815.3761, 996.09, 999.468]
dudon_buzurg: Decaphonic system inspired by medieval Persian mode Buzurg (Safi al-Din), Dudon 1997
[128.2982, 138.5727, 231.1741, 369.7468, 466.8507, 573.6568, 701.955, 830.2532, 840.5277, 933.1291, 1071.7018]
dudon_byzantine: Byzantine scale, JI interpretation and -c extrapolation of turkish Hijaz in C
[130.2293, 138.5727, 379.0852, 386.3137, 491.2691, 498.045, 701.955, 829.3943, 840.5277, 989.3141, 996.09]
dudon_chandrakaus: Chandrakaus from Bb on black keys plus other version from D on white keys
[0.0, 93.603, 182.4037, 405.4436, 405.4436, 479.9167, 585.9438, 780.3048, 795.558, 884.3587, 884.3587]
dudon_chromatic_subh: Chromatic subharmonic scale using smallest possible numbers
[111.7313, 216.6867, 315.6413, 409.2443, 498.045, 623.249, 701.955, 813.6863, 918.6417, 1017.5963, 1111.1993]
dudon_coherent_shrutis: 12 of the 22 shrutis (cycle of fifths from A to D), differentially coherent with C or 2C
[93.603, 203.91, 297.513, 386.3137, 498.045, 590.2237, 701.955, 795.558, 884.3587, 996.09, 1088.2687]
dudon_cometslendro1: Five septimal tone comets (quasi auto-coherent intervals) in one octave
[6.194, 237.3681, 238.7201, 248.1547, 480.5045, 488.7122, 720.471, 724.559, 955.4779, 957.2636, 967.9392]
dudon_cometslendro2: Five septimal tone comets (quasi auto-coherent intervals) in one octave
[232.3159, 240.2871, 472.6119, 479.9167, 480.6455, 712.1839, 719.9747, 952.2589, 960.0099, 1192.2885, 1192.2885]
dudon_comptine: 1/4 pyth. comma meantone sequence between C and E, completed by 8 pure fifths
[90.225, 192.2706, 294.135, 384.36, 498.045, 588.27, 696.0519, 792.18, 888.3122, 996.09, 1086.315]
dudon_comptine_h3: 1/4 pyth. comma meantone sequence between G and B, completed by 8 pure fifths
[90.2346, 198.0711, 294.1446, 390.2439, 498.045, 588.2991, 701.955, 792.1896, 894.1674, 996.0996, 1086.3441]
dudon_country_blues: Differentially-coherent 12 tones country blues scale
[87.8988, 203.91, 327.6222, 386.3137, 498.045, 577.352, 701.955, 795.558, 884.3587, 1009.5627, 1088.2687]
dudon_countrysongs: CDEG chords and all transpositions equal-beating meantone sequence
[81.5271, 196.0586, 307.7899, 389.8353, 502.9341, 586.7386, 698.0337, 779.9754, 892.7595, 1005.3675, 1089.0519]
dudon_gayakapriya: South indian raga with Ethiopian flavors, interpreted through a 19-limit Amlak sequence
[0.0, 203.91, 297.513, 312.6331, 386.3137, 701.955, 701.955, 795.558, 806.9104, 1088.2687, 1093.071]
dudon_gnawa-pelog: Differentially-coherent model of a Gnawa scale, with Pelog variations
[12.322, 187.343, 198.4053, 537.775, 546.8154, 546.8154, 685.388, 685.388, 701.955, 1044.8604, 1044.8604]
dudon_golden_h7eb: 12 of 19/31/50 etc... Golden meantone harmonic 7-c and eq-b version
[73.3786, 192.9327, 312.1823, 384.758, 504.5121, 577.4487, 696.7639, 769.4627, 888.8882, 1008.3569, 1081.3438]
dudon_gulu-nem: 5 tones Pelog from a sequence of very low "Gulu-nem" fifths (about 5/9 of an octave)
[0.0, 141.0601, 141.0601, 282.1166, 282.1166, 282.1166, 671.1203, 671.1203, 812.0844, 812.0844, 812.0844]
dudon_harm_minor: So-called "harmonic" minor scale, also raga Kiravani, one of Dudon's versions
[191.8456, 203.91, 297.513, 315.6413, 498.045, 507.4869, 701.955, 813.6863, 999.468, 1017.5963, 1094.0299]
dudon_harry: Hommage to Harry Partch, 20th century just intonation pioneer (1901-1974)
[182.4037, 203.91, 231.1741, 266.8709, 470.7809, 498.045, 680.4487, 701.955, 729.2191, 764.9159, 968.8259]
dudon_hiroyoshi: Japanese koto most famous mode, also Ethiopian minor scale, etc.
[-607.7526, -498.045, 386.3137, 392.3776, 590.2237, 596.2876, 701.955, 0.0, 386.3137, 1088.2687, 1094.3326]
dudon_homayun: Homayun in G
[0.0, 203.91, 203.91, 342.4827, 491.2691, 491.2691, 701.955, 701.955, 840.5277, 840.5277, 1073.7813]
dudon_hoomi: Hoomi singing scale in F/F# (on black keys), or in C or G, CFGAC^equal-beating sequence
[0.0, 194.341, 194.341, 390.828, 502.5593, 502.5593, 697.4289, 697.4289, 892.9258, 892.9258, 1087.9673]
dudon_kellner_eb: JI version of Anton Kellner 1/5 Pyth.c well-temperament, based on Skisni algorithm
[90.225, 195.1804, 294.135, 389.0031, 498.045, 588.27, 697.4634, 792.18, 893.3595, 996.09, 1090.9581]
dudon_kirvanti: Raga Kirvanti (known also as Hungarian Gypsy scale)
[0.0, 203.91, 297.513, 315.6413, 609.7763, 613.1543, 701.955, 806.9104, 813.6863, 1088.2687, 1105.4951]
dudon_marva: Raga Marva, differential-coherent version, modelized by Jacques Dudon
[88.8007, 104.9554, 386.3137, 404.442, 0.0, 590.2237, 608.352, 884.3587, 902.487, 1088.2687, 1106.397]
dudon_meancaline: 12 of 19-tones quasi-equal HT with coherent semifourths on black keys
[60.7948, 189.511, 315.2203, 378.8728, 505.2278, 565.6538, 694.7846, 755.5825, 884.2072, 1010.4259, 1072.4204]
dudon_melkis: Sequence of 11 Melkis fourths (499.11472 c.) from D
[95.5754, 201.7219, 297.3459, 392.9194, 499.116, 594.6901, 700.8966, 796.4599, 892.0343, 998.2313, 1093.8042]
dudon_melkis_3f: Sequence of 6 Melkis fourths from G, then 3 pure fourths between C# and E
[95.5633, 198.2542, 297.3347, 389.6983, 499.1034, 593.6083, 700.8253, 796.4493, 893.145, 998.2194, 1091.6533]
dudon_meso-iph12: Partial Meso-Iph fifth transposition of two Iph fractal series (2010)
[134.5964, 171.0448, 233.0393, 366.9212, 498.667, 600.1072, 699.2572, 872.9998, 966.6028, 1000.4391, 1066.19]
dudon_michemine: Triple equal-beating of all minor triads meantone sequence
[64.3428, 191.6143, 311.9617, 384.5209, 503.5497, 578.5911, 694.588, 775.3596, 886.1497, 1007.7667, 1075.3096]
dudon_mougi: Tsigan-style raga, based on the 19/16 minor third -c properties
[203.91, 208.7123, 297.513, 312.6331, 595.026, 613.1543, 701.955, 999.468, 1014.5881, 1093.071, 1111.1993]
dudon_napolitan: Napolitan scale, class-1 differential coherence ; whole tone scale by omitting C
[104.9554, 113.4211, 293.7123, 297.513, 498.045, 501.423, 701.955, 701.955, 884.3587, 1088.2687, 1095.4672]
dudon_natte: Sequence of 7 consecutive tones of a Natte series from 28 to 151
[712.0497, 227.3734, 938.1838, 451.876, 486.6177, 1200.0, 712.0497, 227.3734, 938.1838, 451.876, 1169.3579]
dudon_nung-phan1: 7 tones from a sequence of Nung-Phan very low fifths (in theory 679.5604542 c.)
[1200.0, 158.9404, 1358.9404, 318.4135, 483.4177, 1683.4177, 679.6162, 1879.6162, 840.5277, 2040.5277, 997.1301]
dudon_nung-phan2: 7 tones from a Nung-Phan sequence (very low fifths, in theory 679.5604542 c.)
[701.955, 206.4729, 884.3587, 363.0753, 519.5513, 1200.0, 701.955, 1406.4729, 884.3587, 1563.0753, 1049.3629]
dudon_rast-mohajira: Rast + Mohajira -c quartertones set
[187.8054, 203.91, 347.4079, 357.2167, 498.045, 551.3179, 701.955, 884.3587, 905.865, 1049.3629, 1059.1717]
dudon_rast_matrix: Wusta-Zalzal Arijaom sequence with Rast on white keys and other maqamat
[147.8781, 197.773, 348.4101, 361.8828, 499.4228, 552.3201, 705.6268, 859.9278, 899.728, 1015.4508, 1050.3651]
dudon_s-n-buzurg: Decaphonic system inspired by medieval Persian mode Buzurg (Safi al-Din)
[128.2982, 138.5727, 231.1741, 369.7468, 466.8507, 573.6568, 701.955, 830.2532, 840.5277, 933.1291, 1071.7018]
dudon_saba-c: Differentially coherent version of Maqam Saba
[131.9012, 145.2185, 297.513, 315.6413, 409.2443, 692.3102, 701.955, 813.6863, 827.159, 993.3828, 1017.5963]
dudon_sapaan: 7 tones from a sequence of Sapaan very low fifths (in theory 680.015678 c.)
[0.0, 201.3433, 201.3433, 359.9532, 520.9756, 520.9756, 680.0158, 680.0158, 879.7359, 879.7359, 1038.8387]
dudon_saqqara: Scale of a ney flute (n¡ 69815) from ancient Egypt found in Saqqara
[8.1855, 204.8214, 354.8509, 361.5223, 523.4973, 710.1405, 720.9947, 836.104, 846.1987, 1027.5956, 1036.636]
dudon_segah_subh: Inversed Dudon Neutral Diatonic (mediants of major and minor)
[0.0, 194.1013, 347.4079, 347.4079, 498.045, 498.045, 701.955, 701.955, 845.4529, 1049.3629, 1049.3629]
dudon_septimal_2: Slendro formed by five 8/7 separated by two commas, Dudon (2009)
[216.2496, 229.3155, 460.4896, 460.4896, 483.1205, 714.2946, 714.2946, 935.6041, 944.2387, 1177.5647, 1192.5538]
dudon_septimal_3: Five 8/7 or close approximations separated by three commas, Dudon (2009)
[232.9715, 245.5016, 464.1456, 464.1456, 478.7553, 709.9294, 725.7688, 947.4566, 955.7599, 1175.8541, 1185.5529]
dudon_simdek: Heptatonic scale from a sequence of Simdek very low fifths (in theory 676,48557456 c.)
[370.0684, 217.1786, 522.9553, 370.0684, 522.9553, 892.702, 676.6811, 1045.5572, 892.702, 1200.0, 1045.5572]
dudon_sireine_f: Sequence of 11 Sireine fifths (exactly 691.2348426 c.) from F
[33.1164, 182.2693, 201.8926, 364.1285, 508.7647, 544.4616, 691.1685, 719.5628, 873.3016, 876.4945, 1054.6093]
dudon_skisni_hwt: Triple equal-beating sequence from C to B, optimal major chords on white keys
[90.225, 194.8696, 294.135, 389.0167, 498.045, 588.27, 697.4407, 792.18, 891.7817, 996.09, 1086.4644]
dudon_slendra: Cylf-scale (Baka pentatonic Slendro plus pure fifths)
[15.5269, 235.8468, 257.4875, 479.2271, 488.6616, 498.045, 717.4819, 729.8039, 959.4425, 977.2721, 1190.6166]
dudon_slendro_m-mean: Wilson meantone from Bb to F# extended in a Slendro M on black keys
[74.3246, 188.3078, 309.3573, 382.0072, 500.7312, 571.7257, 694.7714, 775.6357, 885.4337, 1006.8097, 1076.0389]
dudon_slendro_matrix: Ten tones for many 7-limit slendros from Lou Harrison, of the five types N, M, A, S, J
[0.0, 231.1741, 231.1741, 462.3482, 470.7809, 498.045, 701.955, 729.2191, 933.1291, 960.3932, 968.8259]
dudon_smallest_numbers: Chromatic scale achieved with smallest possible numbers
[104.9554, 203.91, 297.513, 386.3137, 511.5177, 590.2237, 701.955, 806.9104, 905.865, 999.468, 1088.2687]
dudon_werckmeister3_eb: Harmonic equal-beating version of the famous well-temperament (2006)
[90.225, 192.2706, 294.135, 390.2672, 498.045, 588.27, 696.0519, 792.18, 888.3122, 996.09, 1092.2222]
dudon_zurna: Quartertone scale with tonic transposition on a turkish segah of 159/128
[701.955, 136.0582, -375.4595, 326.4955, 379.7684, 481.6351, 698.3218, 824.5405, 838.0132, 967.2697, 979.6801]
duodene_w: Ellis duodene well-tuned to fifth=(7168/11)^(1/16) third=(11/7)^(1/2), G.W. Smith
[107.6597, 202.1885, 309.8482, 391.246, 498.9058, 593.4345, 701.0942, 808.754, 890.1518, 1010.9425, 1092.3403]
duohex: Scale with two hexanies, inverse mode of hahn_7.scl
[119.4428, 203.91, 315.6413, 386.3137, 435.0841, 617.4878, 701.955, 821.3978, 933.1291, 1017.5963, 1088.2687]
duohexmarvwoo: Marvel woo version of duohex, a scale with two hexanies
[119.4428, 203.91, 315.6413, 386.3137, 435.0841, 617.4878, 701.955, 821.3978, 933.1291, 1017.5963, 1088.2687]
dwarf12_7: Dwarf(<12 19 28 34|) five major triads, four minor triads two otonal pentads
[111.7313, 203.91, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 1017.5963, 1080.5572]
flavel: Bill Flavel's just tuning, mode of Ellis's Just Harmonium. Tuning List 06-05-98
[70.6724, 182.4037, 203.91, 386.3137, 498.045, 568.7174, 701.955, 772.6274, 884.3587, 996.09, 1088.2687]
fokker_12t: Tempered version of fokker_12.scl with egalised 225/224, see also lumma.scl
[114.6107, 199.2374, 268.0849, 384.3519, 499.2824, 584.2049, 699.22, 815.5863, 884.3252, 968.9655, 1083.5743]
fokker_12t2: Another tempered version of fokker_12.scl with egalised 225/224
[114.6032, 199.207, 268.101, 384.3537, 499.3874, 584.1776, 699.2113, 815.464, 884.3587, 968.9618, 1083.565]
foote: Ed Foote, piano temperament. TL 9 Jun 1999, almost equal to Coleman
[97.0, 197.0, 297.0, 394.0, 501.0, 595.0, 699.0, 797.0, 896.0, 999.0, 1094.0]
foote2: Ed Foote´s temperament with 1/6, 1/8 and 1/12 Pyth comma fractions
[98.045, 197.0675, 298.045, 394.135, 501.955, 596.09, 699.0225, 798.045, 896.09, 1000.0, 1094.135]
fortuna_a1: Clem Fortuna, Arabic mode of 24-tET, try C or G major, superset of Basandida, trivalent
[100.0, 200.0, 300.0, 350.0, 500.0, 600.0, 700.0, 800.0, 900.0, 1000.0, 1050.0]
fortuna_a2: Clem Fortuna, Arabic mode of 24-tET, try C or F minor
[100.0, 150.0, 300.0, 400.0, 500.0, 600.0, 700.0, 852.5921, 900.0, 1000.0, 1100.0]
fortuna_bag: Bagpipe tuning from Fortuna, try key of G with F natural
[29.8496, 187.6819, 256.5965, 343.0906, 493.9571, 548.6483, 684.7286, 729.8787, 871.9484, 985.7989, 1049.3629]
francis_seal: J. Charles Francis, Bach tuning interpretion as beats/sec. from seal
[91.9662, 196.15, 295.876, 391.05, 499.786, 590.011, 697.303, 793.921, 891.872, 997.831, 1089.29]
freiberg: Temperament of G. Silbermann organ (1735), St. Petri in Freiberg (1985), a=476.3
[90.225, 196.09, 298.045, 394.135, 500.0, 590.225, 698.045, 790.225, 896.09, 1000.0, 1092.18]
fribourg: Manderscheidt organ in Fribourg (1640), modified meantone
[91.2025, 195.1125, 306.8425, 387.2925, 500.9775, 589.2475, 698.045, 781.4275, 892.18, 1004.8875, 1087.2925]
frischknecht2: Frischknecht II organ temperament, 1/8 P
[96.09, 198.045, 300.0, 396.09, 500.9775, 597.0675, 699.0225, 798.045, 897.0675, 1001.955, 1095.1125]
gabler: In 1982 reconstructed temperament of organ in Weingarten by Joseph Gabler (1737-1750)
[85.4352, 194.917, 304.9853, 390.9092, 500.9775, 588.1722, 700.0, 785.4352, 892.9131, 1002.9814, 1088.1722]
grady_mirror_meta_slendro12: 12-tone slendro generated from 'fifth' based recurrent series by Kraig Grady
[192.8236, 226.521, 419.3446, 453.0421, 645.8656, 679.5631, 713.2605, 906.0841, 939.7815, 1132.6051, 1166.3026]
graf-sorge: Gräf-Sorge organ temperament, 1/6 P
[94.135, 196.09, 298.045, 400.0, 501.955, 596.09, 698.045, 796.09, 898.045, 1000.0, 1098.045]
grammateus: H. Grammateus (Heinrich Schreiber) (1518). B-F# and Bb-F 1/2 P. Also Marpurg nr.6 and Baron von Wiese and Maria Renold
[101.955, 203.91, 305.865, 407.82, 498.045, 600.0, 701.955, 803.91, 905.865, 1007.82, 1109.775]
graupner: Johann Gottlieb Graupner's temperament (1819)
[99.3808, 199.5628, 299.1865, 399.5995, 499.44, 600.0592, 700.0933, 799.578, 899.8589, 999.5754, 1100.0767]
groenewald: Jürgen Grönewald, new meantone temperament (2001)
[101.955, 193.1569, 304.8881, 396.09, 498.045, 600.0, 701.955, 803.91, 895.1119, 1006.8431, 1098.045]
groenewald_bach: Jürgen Grönewald, simplified Bach temperament, Ars Organi vol.57 no.1, March 2009, p.39
[90.225, 189.2501, 294.135, 386.606, 498.045, 588.27, 693.1751, 792.18, 887.2751, 996.09, 1086.8081]
hahnmaxr: Paul Hahn's hahn_7.scl marvel projected to the 5-limit
[92.1787, 274.5824, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 813.6863, 884.3587, 976.5374, 1088.2687]
hamilton: Elsie Hamilton's gamut, from article The Modes of Ancient Greek Music (1953)
[80.537, 165.0042, 253.8049, 347.4079, 446.3625, 551.3179, 663.0492, 782.492, 845.4529, 910.7903, 1049.3629]
hamilton_jc: Chalmers' permutation of Hamilton's gamut. Diatonic notes on white
[80.537, 165.0042, 253.8049, 347.4079, 551.3179, 446.3625, 782.492, 663.0492, 910.7903, 845.4529, 1049.3629]
hamilton_jc2: EH gamut, diatonic notes on white and drops 17 for 25. JC Dorian Harmonia on C. Schlesinger's Solar scale
[80.537, 165.0042, 253.8049, 347.4079, 551.3179, 663.0492, 782.492, 845.4529, 910.7903, 978.6905, 1049.3629]
hammond12: Hammond organ scale, 1/1=277.0731707 Hz, A=440, see hammond.scl for the ratios
[100.8834, 200.5955, 300.2882, 400.0029, 500.7099, 600.704, 699.9768, 800.6838, 900.3985, 1000.0912, 1100.1073]
handel: Well temperament according to Georg Friedrich Händel's rules (c. 1780)
[93.0402, 195.4644, 296.9502, 395.6208, 498.9834, 592.962, 697.263, 794.9952, 895.5426, 997.9668, 1094.7606]
handel2: Another "Händel" temperament, C. di Veroli
[99.7117, 199.9233, 299.6217, 399.8333, 499.5317, 599.7567, 699.455, 799.6667, 899.8783, 999.5767, 1100.3017]
hanfling-bumler: The Hänfling/Bümler equal temperament from Mattheson, June 1722, corrected
[99.9987, 199.9975, 300.0029, 400.0011, 500.0082, 600.0044, 699.9998, 800.0014, 900.0031, 1000.0032, 1100.0051]
harmjc-phryg12: Rationalized JC Phrygian Harmonia on Schlesinger's Venus scale on C, MD = 24 or 12
[73.6807, 150.6371, 231.1741, 315.6413, 498.045, 596.9996, 701.955, 813.6863, 933.1291, 996.09, 1061.4273]
harmonical: See pages 17 and 466-468 of Helmholtz. Lower 4 oct. instrument designed and tuned by Ellis
[182.4037, 203.91, 315.6413, 386.3137, 498.045, 701.955, 813.6863, 884.3587, 968.8259, 1017.5963, 1088.2687]
harrison_slye: 11-limit scale by Lou Harrison and Bill Slye for National Reso-Phonic Just Intonation Guitar
[62.9609, 203.91, 266.8709, 386.3137, 498.045, 551.3179, 701.955, 764.9159, 884.3587, 968.8259, 1049.3629]
heun: Well temperament for organ of Jan Heun (1805), 12 out of 55-tET (1/6-comma meantone)
[87.2727, 196.3636, 305.4545, 392.7273, 501.8182, 589.0909, 698.1818, 785.4546, 894.5454, 1003.6364, 1090.9091]
highschool3: Third 12-note Highschool scale, inverse is fourth Highschool scale
[111.7313, 231.1741, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 968.8259, 1088.2687]
hill: Robert Hill, Bach temperament based on 1/13 P (2008)
[95.6388, 196.6915, 297.7442, 393.3831, 501.6542, 595.4885, 698.3458, 795.7892, 895.0373, 999.6992, 1095.3381]
hummel2: Johann Nepomuk Hummel's temperament according to the second bearing plan, also John Marsh's quasi-equal temperament (1840)
[100.2809, 199.9973, 300.4986, 400.422, 499.8028, 599.9848, 699.6085, 800.0215, 899.8619, 1000.4812, 1100.5152]
indian_12: North Indian Gamut, modern Hindustani gamut out of 22 or more shrutis
[111.7313, 203.91, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 813.6863, 905.865, 1017.5963, 1088.2687]
indian_12c: Carnatic gamut. Kuppuswami: Carnatic music and the Tamils, p. v
[98.9546, 203.91, 315.6413, 394.3473, 498.045, 596.9996, 701.955, 800.9096, 905.865, 1017.5963, 1096.3023]
indian_rot: Rotated North Indian Gamut
[70.6724, 111.7313, 274.5824, 386.3137, 498.045, 701.955, 772.6274, 813.6863, 884.3587, 1088.2687, 1158.9411]
jousse: Temperament of Jean Jousse (1832)
[98.2463, 196.9961, 302.1563, 394.7371, 500.2615, 596.2912, 698.9953, 800.2013, 896.3099, 1001.6259, 1094.3363]
jousse2: Jean Jousse's quasi-equal piano temperament, also Becket and Co. plan (1840)
[100.182, 199.8056, 300.2186, 400.0591, 500.6784, 600.7124, 700.1972, 800.478, 900.1945, 1000.6958, 1100.6191]
kayolonian_12: See Barnard: De Keiaanse Muziek, p. 11. (uitgebreide reeks)
[111.7313, 203.91, 315.6413, 386.3137, 498.045, 701.955, 772.6274, 813.6863, 884.3587, 996.09, 1088.2687]
keenan_mt: Dave Keenan 1/4-comma tempered version of keenan.scl with 6 7-limit tetrads
[117.1079, 193.1569, 269.2059, 386.3137, 503.4216, 579.4706, 696.5784, 813.6863, 889.7353, 965.7843, 1082.8921]
kelber: kelber-Jacobi reconstruction of organ temperament Liebfrauenkirche Bremen (1995)
[87.8775, 195.3075, 296.0887, 390.615, 502.1494, 585.9225, 697.6537, 789.8325, 892.9612, 1000.1943, 1088.2687]
kelletat: Herbert Kelletat's Bach-tuning (1966), Ein Beitrag zur musikalischen Temperatur p. 26-27.
[90.225, 196.09, 294.135, 388.27, 498.045, 588.27, 700.0, 792.18, 892.18, 996.09, 1086.315]
kirn-stan: Kirnberger temperament improved by Charles Earl Stanhope (1806)
[93.603, 193.7561, 297.513, 386.3137, 498.045, 591.648, 701.955, 795.558, 888.9086, 996.09, 1088.2687]
kirnberger: Kirnberger's well-temperament, also called Kirnberger III, letter to Forkel 1779
[90.225, 193.1569, 294.135, 386.3137, 498.045, 590.2237, 696.5784, 792.18, 889.7353, 996.09, 1088.2687]
kirnberger1: Kirnbergersche Temperatur (1766). Also 12 Indian shrutis
[90.225, 203.91, 294.135, 386.3137, 498.045, 590.2237, 701.955, 792.18, 884.3587, 996.09, 1088.2687]
konig: In 1997 observed temperament of pipes in Niederehe/Eifel by Balthaser König (1715)
[80.45, 197.654, 307.82, 388.661, 501.955, 585.533, 700.391, 782.405, 893.744, 1003.91, 1092.962]
lang: Johannes Lang, Freiburg, organ temperament, 1/6 P and two -1/12 P
[96.09, 196.09, 301.955, 396.09, 501.955, 592.18, 698.045, 800.0, 898.045, 1000.0, 1094.135]
legros1: Example of temperament with 3 just major thirds
[81.4256, 193.1569, 290.909, 386.3137, 498.045, 579.4706, 696.5784, 783.3806, 889.7353, 996.09, 1082.8921]
legros2: Example of temperament with 2 just major thirds
[86.8021, 193.1569, 290.909, 386.3137, 498.045, 584.8471, 696.5784, 788.7571, 889.7353, 996.09, 1082.8921]
lindley-hamburg: Mark Lindley, proposed revision for organ Jakobikirche, Hamburg (1994)
[90.0295, 195.308, 294.135, 390.616, 500.1955, 590.225, 697.654, 791.007, 892.962, 998.2405, 1090.4205]
lindley-hamburg2: Mark Lindley, compromise between lindley-hamburg.scl and vogelh_hamburg.scl (1994)
[89.052, 195.308, 294.135, 390.616, 502.346, 588.0745, 697.654, 791.007, 892.962, 998.2405, 1088.27]
lindley-ortgies1: Lindley-Ortgies I Bach temperament (2006), Early Music 34/4, Nov. 2006
[96.09, 198.045, 298.045, 396.09, 500.9775, 596.09, 699.0225, 797.0675, 897.0675, 999.0225, 1096.09]
lindley-ortgies2: Lindley-Ortgies II Bach temperament (2006), Early Music 34/4, Nov. 2006
[94.135, 196.09, 296.09, 392.18, 496.09, 592.18, 698.045, 796.09, 894.135, 996.09, 1090.225]
lindley1: Mark Lindley I Bach temperament (1993)
[93.7336, 196.3882, 296.4949, 392.7763, 500.5301, 592.9899, 698.1941, 794.4773, 894.5823, 998.5125, 1092.2462]
lindley2: Mark Lindley II Average Neidhardt temperaments (1993)
[95.1125, 196.09, 297.0675, 393.1575, 499.0225, 594.135, 698.045, 796.09, 894.135, 998.045, 1094.135]
lindley_ea: Mark Lindley +J. de Boer +W. Drake (1991), for organ Grosvenor Chapel, London
[90.225, 196.09, 294.135, 392.18, 501.955, 590.225, 698.045, 792.18, 894.135, 998.045, 1090.225]
lindley_sf: Lindley (1988) suggestion nr. 2 for Stanford Fisk organ
[94.135, 196.09, 294.135, 392.18, 501.955, 592.18, 698.045, 794.135, 894.135, 998.045, 1090.225]
lindley_sf2: Lindley (1994) New Stanford neobaroque organ temperament
[92.18, 195.308, 292.18, 390.616, 502.346, 590.225, 697.654, 792.18, 892.962, 997.263, 1088.27]
locomotive: A 2.9.11.13 subgroup scale, Gene Ward Smith
[143.4979, 203.91, 347.4079, 359.4723, 551.3179, 636.6177, 648.6821, 840.5277, 852.5921, 996.09, 1056.5021]
london-baroque: Well-temperament used by London Baroque, close to Young
[90.225, 196.09, 294.135, 394.135, 498.045, 590.225, 698.045, 792.18, 894.135, 996.09, 1092.18]
london-chapel: Organ temperament, Grosvenor Chapel, London (originally). See also lindley_ea.scl
[90.225, 196.09, 296.09, 392.18, 501.955, 588.27, 698.045, 792.18, 894.135, 1000.0, 1090.225]
lublin: Johannes von Lublin (1540) interpr. by Franz Joseph Ratte, p. 255
[85.2237, 196.955, 301.09, 400.865, 505.0, 604.775, 701.955, 787.1787, 898.91, 1003.045, 1102.82]
maihingen: Tuning of the Baumeister organ in Maihingen (1737)
[85.3375, 199.0225, 305.865, 387.2925, 500.9775, 583.3825, 701.955, 781.4275, 896.09, 994.135, 1086.315]
major_wing: Chalmers' Major Wing with 7 major and 6 minor triads
[70.6724, 203.91, 315.6413, 386.3137, 498.045, 701.955, 772.6274, 813.6863, 884.3587, 1017.5963, 1088.2687]
major_wing_lesfip: Lesfip version of Chalmers' Major Wing, 7-limit, 15 cents
[75.7585, 196.9802, 310.5336, 387.5566, 501.7884, 697.5343, 774.5572, 814.4765, 888.1106, 1009.3323, 1085.0908]
malcolm: Alexander Malcolm's Monochord (1721), and C major in Yamaha synths, Wilkinson: Tuning In
[111.7313, 203.91, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 813.6863, 884.3587, 996.09, 1088.2687]
malcolm_ap: Best approximations in mix of all ETs from 12-23 to Malcolm's Monochord
[114.286, 200.0, 315.789, 381.818, 500.0, 600.0, 700.0, 818.182, 884.211, 1000.0, 1085.714]
malcolme: Most equal interval permutation of Malcolm's Monochord
[111.7313, 203.91, 315.6413, 386.3137, 498.045, 609.7763, 701.955, 813.6863, 884.3587, 996.09, 1107.8213]
malcolme2: Inverse most equal interval permutation of Malcolm's Monochord
[92.1787, 203.91, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 813.6863, 884.3587, 996.09, 1088.2687]
malcolms: Symmetrical version of Malcolm's Monochord and Riley's Albion scale. Also proposed by Hindemith in Unterweisung im Tonsatz
[111.7313, 203.91, 315.6413, 386.3137, 498.045, 600.0, 701.955, 813.6863, 884.3587, 996.09, 1088.2687]
mander: John Pike Mander's Adlington-Hall organ tuning compiled by A.Sparschuh
[78.9165, 193.1569, 294.135, 386.3137, 498.045, 581.2628, 696.5784, 777.2871, 889.7353, 996.09, 1082.8921]
marissing: Peter van Marissing, just scale, Mens en Melodie, 1979
[182.4037, 203.91, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 884.3587, 905.865, 996.09, 1088.2687]
marpurg: Marpurg, Versuch über die musikalische Temperatur (1776), p. 153
[101.955, 200.9775, 300.0, 401.955, 500.9775, 600.0, 701.955, 800.9775, 900.0, 1001.955, 1100.9775]
meanpi: Pi-based meantone with Harrison's major third by Erv Wilson
[88.733, 204.507, 293.24, 381.972, 497.747, 586.479, 702.254, 790.986, 879.718, 995.493, 1084.225]
meanpi2: Pi-based meantone by Erv Wilson analogous to 22-tET
[163.756, 218.216, 381.972, 436.432, 600.188, 654.648, 709.108, 872.864, 927.324, 1091.08, 1145.54]
meanquarw2: 1/4-comma meantone with 1/2 wolf, used in England in 19th c. (Ellis)
[76.049, 193.1569, 289.7353, 386.3137, 503.4216, 579.4706, 696.5784, 772.6274, 889.7353, 1006.8431, 1082.8921]
meanquarw3: 1/4-comma meantone with 3 superpythagorean fifths, C. di Veroli & S. Leidemann (1985), also called Rainbow
[76.049, 193.1569, 296.5784, 386.3137, 503.4216, 579.4706, 696.5784, 786.3137, 889.7353, 1006.8431, 1082.8921]
meister-p12: Temperament with 1/6 and 1/12 P comma, W.Th. Meister, p. 117
[90.225, 196.09, 301.955, 392.18, 501.955, 590.225, 698.045, 790.225, 894.135, 1001.955, 1090.225]
meister-s4: Temperament with 1/4 comma, W.Th. Meister, p. 120
[85.8253, 193.1569, 294.135, 386.3137, 498.045, 579.4706, 696.5784, 792.18, 889.7353, 996.09, 1082.8921]
meister-s5: Temperament with 1/5 comma, W.Th. Meister, p. 121
[94.1344, 195.3075, 296.4806, 390.615, 498.8269, 592.9612, 697.6537, 795.3075, 892.9612, 997.6537, 1091.7881]
meister-synt: Halved syntonic comma's, Wolfgang Theodor Meister, Die Orgelstimmung in Süddeutschland, 1991, p. 117
[70.6724, 193.1569, 315.6413, 386.3137, 498.045, 579.4706, 701.955, 772.6274, 884.3587, 1006.8431, 1088.2687]
meister-t: A temperament, W.Th. Meister, p. 35-36
[111.7313, 198.5334, 315.6413, 391.6903, 498.045, 609.7763, 701.955, 813.6863, 895.1119, 996.09, 1088.2687]
miller7: Herman Miller, 7-limit JI. mode of parizek_ji1
[84.4672, 203.91, 315.6413, 400.1085, 519.5513, 582.5122, 701.955, 786.4222, 898.1535, 1017.5963, 1102.0635]
miller_12: Herman Miller, scale with appr. to three 7/4 and one 11/8, TL 19-11-99
[76.0, 188.0, 312.0, 388.0, 500.0, 576.0, 700.0, 812.0, 888.0, 964.0, 1076.0]
miller_12r: Herman Miller, "Starling" scale rational version
[70.6724, 182.4037, 315.6413, 386.3137, 498.045, 568.7174, 701.955, 813.6863, 884.3587, 955.0311, 1066.7624]
minor_clus: Chalmers' Minor Mode Cluster, Genus [333335]
[111.7313, 203.91, 315.6413, 498.045, 519.5513, 609.7763, 701.955, 813.6863, 905.865, 996.09, 1017.5963]
minor_wing: Chalmers' Minor Wing with 7 minor and 6 major triads
[203.91, 315.6413, 386.3137, 498.045, 631.2826, 701.955, 813.6863, 884.3587, 1017.5963, 1088.2687, 1129.3276]
miracle_12: A 12-tone subset of Blackjack with six 4-7-9-11 tetrads
[116.6667, 233.3333, 350.0, 433.3333, 466.6667, 550.0, 583.3333, 666.6667, 783.3333, 900.0, 1016.6667]
miracle_12a: A 12-tone chain of Miracle generators and subset of Blackjack
[116.6667, 233.3333, 350.0, 466.6667, 583.3333, 700.0, 816.6667, 933.3333, 1050.0, 1083.3333, 1166.6667]
mmswap: Swapping major and minor in 5-limit JI
[-70.6724, 203.91, 133.2376, 315.6413, 498.045, 519.5513, 701.955, 631.2826, 813.6863, 835.1926, 1017.5963]
mobbs-mackenzie: Kenneth Mobbs and Alexander Mackenzie of Ord, Bach temperament (2005)
[93.9383, 201.4987, 297.8483, 398.8265, 499.2818, 591.9833, 700.7494, 795.8933, 902.248, 998.5651, 1095.4049]
mohaj-bala_213: Parizekmic Mohajira+Bala scale, based on a double Bala sequence
[111.7313, 250.3039, 291.4278, 454.2139, 498.045, 609.7763, 701.955, 813.6863, 952.2589, 996.09, 1156.1689]
mohaj-bala_443: Parizekmic Mohajira+Bala scale, based on a double Bala sequence
[111.7313, 250.3039, 359.1718, 454.2139, 498.045, 609.7763, 701.955, 813.6863, 952.2589, 1059.8236, 1156.1689]
mohajira-to-slendro: From Mohajira to Aeolian and Slendros
[84.4672, 203.91, 315.6413, 351.3381, 498.045, 582.5122, 701.955, 813.6863, 849.3831, 1017.5963, 1049.3629]
monarda_ji: Monarda scale by Scott Dakota, 10:12:14:17 x 6:8:9, previous to 273/272 561/560 441/440 225/224 (Tannic) tempering (2018)
[104.9554, 182.4037, 266.8709, 386.3137, 498.045, 603.0004, 701.955, 764.9159, 884.3587, 968.8259, 1101.0454]
monarda_tannic_pote: Monarda scale by Scott Dakota, 10:12:14:17 x 6:8:9, with 273/272 561/560 441/440 225/224 (Tannic) POTE tempering (2018)
[101.8692, 184.1935, 266.5179, 383.4458, 500.3738, 602.243, 699.6262, 766.8917, 883.8197, 966.144, 1102.6168]
montvallon: Montvallon's Monochord, Nouveau sisteme de musique (1742)
[92.1787, 203.91, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 794.1337, 884.3587, 996.09, 1088.2687]
monza: Irregular tuning for 18th century Italian music
[85.533, 194.526, 294.135, 389.052, 498.045, 583.578, 697.263, 789.834, 891.789, 996.09, 1086.315]
monzo_sumerian_2place12: Monzo - most accurate 2-place sexagesimal 12-tET approximation
[99.9733, 200.1271, 300.1299, 400.195, 499.9697, 599.7174, 699.7923, 799.8915, 899.6545, 999.5131, 1099.1229]
parapyth12trans: A JI transversal of parapyth17.scl for use in calculations. If you temper out 352/351 and 364/363 it becomes parapyth17
[62.9609, 203.91, 266.8709, 417.508, 470.7809, 551.3179, 701.955, 764.9159, 910.7903, 968.8259, 1119.463]
pykett_dorset: Colin Pykett, a Dorset Temperament (2002)
[100.7, 199.44, 299.83, 401.81, 500.5, 600.03, 700.15, 800.76, 901.39, 1001.8, 1101.5]
pyle: Howard Willet Pyle quasi equal temperament
[100.05, 199.89, 300.17, 400.22, 500.05, 599.99, 699.73, 799.9, 899.86, 1000.25, 1100.4]
pyramid: This scale may also be called the "Wedding Cake"
[203.91, 274.5824, 386.3137, 498.045, 590.2237, 701.955, 772.6274, 884.3587, 905.865, 996.09, 1088.2687]
pyth_12s: Pythagorean with major thirds flat by a schisma
[113.685, 203.91, 317.595, 384.36, 498.045, 588.27, 701.955, 815.64, 882.405, 1019.55, 1086.315]
rameau-flat: Rameau Si bémol, see Pierre-Yves Asselin in "Musique et temperament"
[92.668, 193.157, 304.888, 386.3137, 503.422, 582.2, 696.578, 800.0, 889.735, 1006.843, 1082.892]
rameau-french: Standard French temperament, Rameau version (1726), C. di Veroli, 2002
[88.3344, 193.1569, 297.9794, 386.3137, 503.4216, 584.8471, 696.5784, 793.1569, 889.7353, 1001.4666, 1082.8921]
rameau-nouv: Temperament by Rameau in Nouveau Systeme (1726)
[92.4725, 193.1569, 302.0529, 386.3137, 503.4216, 587.6823, 696.5784, 797.2627, 889.7353, 1006.8431, 1082.8921]
rameau-righ: Rameau's temperament, after Benjamin Righetti (2016)
[80.8282, 193.1569, 293.9171, 386.3137, 503.4216, 581.2628, 696.5784, 780.991, 889.7353, 1006.8431, 1082.8921]
rameau-sharp: Rameau dieses, see Pierre-Yves Asselin in "Musique et temperament"
[76.049, 193.157, 285.6, 386.3137, 498.045, 579.471, 696.578, 775.316, 889.735, 993.2, 1082.892]
ramis: Monochord of Ramos de Pareja (Ramis de Pareia), Musica practica (1482). 81/80 & 2048/2025. Switched on Bach
[92.1787, 182.4037, 294.135, 386.3137, 498.045, 590.2237, 701.955, 792.18, 884.3587, 996.09, 1088.2687]
rectsp6: Rectangle minimal beats spectrum of order 6, also Songlines.DEM, Bill Thibault and Scott Gresham-Lancaster (1992)
[266.8709, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 968.8259, 1017.5963, 1049.3629]
reinhard: Andreas Reinhard's Monochord (1604) (variant of Ganassi's). Also Abraham Bartolus (1614)
[98.9546, 203.91, 292.7107, 386.3137, 498.045, 596.9996, 701.955, 790.7557, 884.3587, 983.3133, 1088.2687]
riley_albion: Terry Riley's Harp of New Albion scale, inverse Malcolm's Monochord, 1/1 on C#
[111.7313, 203.91, 315.6413, 386.3137, 498.045, 609.7763, 701.955, 813.6863, 884.3587, 996.09, 1088.2687]
riley_rosary: Terry Riley, tuning for Cactus Rosary (1993)
[35.6968, 203.91, 266.8709, 386.3137, 470.7809, 551.3179, 701.955, 737.6518, 840.5277, 968.8259, 1088.2687]
robot_dead: Dead Robot (see lattice)
[70.6724, 111.7313, 203.91, 274.5824, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 884.3587, 1088.2687]
romieu_inv: Romieu inverted, Pure (just) C minor in Wilkinson: Tuning In
[70.6724, 182.4037, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 813.6863, 884.3587, 996.09, 1088.2687]
rothert: Thomas Rothert, Bayreuth temperament, 1/8 P consecutive
[96.09, 198.045, 300.0, 396.09, 500.9775, 594.135, 699.0225, 798.045, 897.0675, 1001.955, 1095.1125]
rousseau: Rousseau's Monochord, Dictionnaire de musique (1768)
[70.6724, 203.91, 315.6413, 386.3137, 498.045, 568.7174, 701.955, 813.6863, 884.3587, 1017.5963, 1088.2687]
rousseau2: Standard French temperament Rousseau-2, C. di Veroli
[81.4256, 193.1569, 287.5847, 386.3137, 498.045, 581.2628, 696.5784, 783.3806, 889.7353, 993.8409, 1082.8921]
rousseau3: Standard French temperament Rousseau-3, C. di Veroli, 2002
[81.4256, 193.1569, 288.8392, 386.3137, 498.045, 579.4706, 696.5784, 783.3806, 889.7353, 994.2978, 1082.8921]
rousseau4: Standard French temperament Rousseau-4, C. di Veroli
[81.4256, 193.1569, 287.5847, 386.3137, 498.045, 579.4706, 696.5784, 783.3806, 889.7353, 993.8409, 1082.8921]
rvfj_12: Regularly varied fifths well temperament with just fifth. Op de Coul (2007)
[93.7795, 196.4454, 295.2014, 394.3127, 498.045, 593.6018, 698.045, 794.3127, 895.2014, 996.4455, 1093.7795]
samad_oghab_dokhtaramme_zurnascale: Ushshaq-like Zurna scale on A from Dokhtar Amme sang by Samad Oghab
[221.3095, 354.5471, 375.7895, 401.9811, 448.1501, 478.2593, 575.0014, 701.955, 900.0261, 1056.5021, 1077.7445]
sankey: John Sankey's Scarlatti tuning, personal evaluation based on d'Alembert's
[85.6, 193.4, 291.4, 386.3137, 498.045, 584.7, 696.7, 787.5, 888.7, 994.9, 1086.315]
sauveur: Sauveur's tempered system of the harpsichord. Traité (1697)
[85.429, 194.319, 311.789, 395.69, 502.325, 587.221, 697.153, 807.712, 893.287, 1009.919, 1090.274]
sauveur2: Sauveur's Système Chromatique des Musiciens (Mémoires 1701), 12 out of 55.
[109.091, 196.364, 305.455, 392.727, 501.818, 610.909, 698.182, 807.273, 894.545, 1003.636, 1090.909]
sauveur_ji: Application des sons harmoniques à la composition des jeux d'orgues (1702) (PB 81/80 & 128/125)
[70.6724, 203.91, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 813.6863, 884.3587, 1017.5963, 1088.2687]
schneider_log: Robert Schneider, scale of log(4) .. log(16), 1/1=264Hz
[258.3879, 444.172, 587.0538, 701.955, 797.3384, 878.425, 948.642, 1010.3496, 1065.2361, 1114.5469, 1159.225]
schroeter: Christoph Gottlieb Schröter, approximation of ET by the first order difference series 1 2 2 2 2 2 2 2 3 3 3 3. Also from Zarlino
[62.9609, 182.4037, 294.135, 399.0904, 498.045, 591.648, 680.4487, 764.9159, 884.3587, 996.09, 1101.0454]
schroeter2: Christoph Gottlieb Schröter, approximation of ET by a 2nd order difference series, Leipzig (1747)
[100.6598, 199.2119, 298.9267, 399.3162, 499.9633, 600.5148, 700.675, 800.1986, 898.8845, 998.7271, 1099.238]
schulter_14_13-12: Temperament with just 14/13 apotome, close to Pepper Noble Fifth
[128.2982, 208.0852, 287.8722, 416.1704, 495.9574, 624.2556, 704.0426, 832.3409, 912.1278, 991.9148, 1120.213]
sevish: Sean "Sevish" Archibald's "Trapped in a Cycle" JI scale
[53.2729, 203.91, 266.8709, 386.3137, 470.7809, 551.3179, 701.955, 818.1888, 884.3587, 905.865, 968.8259]
sevish_whitey: Just scale used in Whitey on Golden Hour
[71.3936, 266.8709, 302.5677, 506.4777, 533.7418, 569.4386, 737.6518, 773.3486, 800.6127, 968.8259, 1004.5227]
silbermann2a: Modified Silbermann's temperament nr. 2, also used by Hinsz in Midwolda
[86.315, 196.09, 298.045, 392.18, 501.955, 588.27, 698.045, 784.36, 894.135, 1003.91, 1090.225]
simonton: Simonton Integral Ratio Scale, JASA 25/6 (1953): A new integral ratio scale
[104.9554, 203.91, 297.513, 386.3137, 498.045, 603.0004, 701.955, 795.558, 884.3587, 996.09, 1101.0454]
smithgw_exotic1: Exotic temperament featuring four pure 14/11 thirds and two pure fifths
[86.0617, 198.3853, 310.709, 391.246, 503.5697, 589.6314, 701.955, 782.492, 894.8157, 1007.1393, 1093.201]
smithgw_grail: Holy Grail circulating temperament with two 14/11 and one 9/7 major third
[86.869, 195.623, 304.377, 391.246, 504.377, 578.081, 695.623, 795.623, 895.623, 1013.1651, 1086.869]
sub50: 12 out of subharmonics 25-50
[70.6724, 182.4037, 301.8465, 386.3137, 475.1144, 617.4878, 667.672, 772.6274, 884.3587, 1003.8015, 1066.7624]
sullivan_blue: John O'Sullivan, Blue Temperament (2010), many good intervals within 256/255
[121.5605, 200.7339, 313.5236, 388.4314, 501.2215, 580.3951, 701.955, 816.8623, 889.4404, 1012.5144, 1085.0923]
sullivan_blueji: John O'Sullivan, Blue JI, 7-limit Natural Pan Tuning (2007). 3/2 is also tonic
[119.4428, 203.91, 315.6413, 386.3137, 498.045, 582.5122, 701.955, 813.6863, 884.3587, 1017.5963, 1088.2687]
tansur: William Tans'ur temperament from A New Musical Grammar (1746) p. 73
[90.7953, 197.2063, 294.135, 392.5661, 498.045, 588.8403, 699.0852, 792.7503, 894.0362, 996.09, 1089.9436]
tapek-ribbon: Eq-diff ribbon extension of Superpyth, made of two Tapek sequences
[122.0892, 220.5566, 391.3245, 441.056, 489.7926, 611.8333, 710.2983, 881.0625, 930.7753, 979.5457, 1101.5988]
temp12b2w: The fifths on black keys beat twice the amount of fifths on white keys
[102.7134, 200.8017, 300.7603, 401.9441, 499.4419, 603.3903, 700.0907, 801.1529, 901.0967, 999.5802, 1102.4213]
temp12w2b: The fifths on white keys beat twice the amount of fifths on black keys
[97.6474, 198.3769, 298.9448, 397.3537, 500.5291, 596.8668, 698.6373, 798.0353, 897.3737, 999.5048, 1096.6719]
temp7-5ebf: 7 equal beating fifths on white, 5 equal beating fifths on black
[70.7135, 168.0515, 313.3819, 339.4515, 513.9422, 551.0301, 680.5291, 796.0275, 850.5738, 1035.6586, 1023.815]
terrain: JI version of generated scale for 63/50 and 10/9 effectively 250047/250000 (landscape) tempering in 2.9/5.9/7 subgroup
[34.9756, 182.4037, 217.3793, 400.1085, 435.0841, 582.5122, 617.4878, 799.8915, 835.1926, 982.6207, 1017.5963]
tetragam-slpe: Tetragam Slendro as 5-tET, Pelog-like pitches on C# E F# A B
[0.0, 240.0, 240.0, 111.7313, 480.0, 498.045, 720.0, 960.0, 701.955, 960.0, 813.6863]
tetragam-slpe2: Tetragam Slendro as 5-tET, Pelog-like pitches on C# E F# A B
[0.0, 240.0, 240.0, 156.0, 480.0, 312.0, 720.0, 720.0, 678.0, 960.0, 834.0]
triangs13: The first 13 terms of the triangular number series, octave reduced
[53.2729, 203.91, 342.4827, 386.3137, 470.7809, 590.2237, 609.3536, 701.955, 937.6317, 968.8259, 1088.2687]
triaphonic_12: 12-tone Triaphonic Cycle, conjunctive form on 4/3, 5/4 and 6/5
[88.8007, 182.4037, 281.3583, 386.3137, 498.045, 586.8457, 680.4487, 779.4033, 884.3587, 983.3133, 1088.2687]
trost: Johann Caspar Trost, organ temperament (1677), from Ratte, p. 390
[96.5787, 206.8425, 296.5788, 400.0, 503.4212, 600.0, 696.5788, 793.1575, 903.4212, 1006.8425, 1089.7362]
trost-hg: Mark Lindley approximation (1988) of organ temperament attributed to Heinrich Gottfried Trost (1738)
[93.1575, 198.045, 297.0675, 396.09, 500.9775, 594.135, 699.0225, 792.18, 897.0675, 1001.955, 1095.1125]
tuinstra: Organ tuning after Stef Tuinstra of organ in Bethelkerk, Bodegraven (2014)
[97.5563, 198.045, 298.5337, 396.09, 499.5113, 595.6013, 699.0225, 796.5788, 897.0675, 999.0225, 1095.1125]
tuners1: The Tuner's Guide well temperament no. 1 (1840)
[95.7597, 196.9975, 299.6697, 394.7398, 500.261, 595.9016, 698.9959, 797.7147, 896.3119, 1001.6247, 1095.5176]
tuners2: The Tuner's Guide well temperament no. 2 (1840)
[98.7726, 199.3785, 300.8497, 399.2506, 500.9518, 599.5634, 700.0144, 798.8947, 899.6041, 1001.1738, 1099.6648]
tuners3: The Tuner's Guide well temperament no. 3 (1840)
[98.3469, 199.8569, 300.7263, 398.7098, 499.8658, 598.1122, 699.5243, 800.3019, 899.6464, 1000.6384, 1098.7344]
vallotti: Vallotti & Young scale (Vallotti version) also known as Tartini-Vallotti (1754)
[94.135, 196.09, 298.045, 392.18, 501.955, 592.18, 698.045, 796.09, 894.135, 1000.0, 1090.225]
vallotti-broekaert: Version of Tartini-Vallotti with equal beating tempered fifths by Johan Broekaert (2016)
[93.9567, 195.5884, 297.8667, 392.0678, 501.7767, 592.0017, 696.9669, 795.9117, 893.0889, 999.8217, 1090.0467]
vallotti2: Francesco Antonio Vallotti temperament, 1/6-comma
[95.7631, 196.7412, 299.6731, 393.4825, 501.6294, 593.8081, 698.3706, 797.7181, 895.1119, 1001.6281, 1091.8531]
veroli1: Claudio di Veroli Bach temperament I (2009)
[96.09, 196.09, 300.0, 394.135, 501.955, 594.135, 698.045, 798.045, 896.09, 1001.955, 1094.135]
veroli2: Claudio di Veroli Bach temperament II (2009)
[96.09, 196.09, 300.0, 394.135, 501.955, 594.135, 698.045, 800.0, 896.09, 1001.955, 1094.135]
victor_eb: Equal beating Victorian piano temperament, interpr. by Bill Bremmer (improved)
[95.4369, 197.059, 299.3469, 394.2189, 498.045, 593.4819, 699.3119, 797.3919, 896.203, 998.5643, 1096.1739]
victorian: Form of Victorian temperament (1885)
[96.0, 198.0, 298.0, 393.0, 500.0, 595.0, 700.0, 797.0, 895.0, 999.0, 1094.0]
vogelh_b: Harald Vogel's temperament, van Eeken organ, Immanuelkerk, Bunschoten (1992). Memorial Chapel, Stanford (1958)
[94.917, 194.526, 294.135, 389.052, 502.737, 588.27, 697.263, 792.18, 891.789, 996.09, 1086.315]
vogelh_fisk: Modified meantone tuning of Fisk organ in Memorial Church at Stanford
[80.1242, 194.526, 309.5795, 389.052, 502.737, 583.5454, 697.263, 776.7029, 891.789, 1006.1582, 1086.315]
vogelh_hamburg: Harald Vogel's temperament for the Schnitger organ in St. Jakobi, Hamburg (1993)
[87.8775, 195.3075, 296.0887, 390.615, 502.3463, 585.9225, 697.6537, 789.8325, 892.9612, 1000.3913, 1088.2687]
wegscheider2: Kristian Wegscheider, temperament for organ in Reinfeld, 1/6 P
[98.045, 200.0, 301.955, 396.09, 501.955, 596.09, 698.045, 800.0, 898.045, 1003.91, 1094.135]
wegscheider_1a: Kristian Wegscheider, temperament 1A, equal beating with two pure fifths, Tuning Methods in Organbuilding
[97.3336, 198.6529, 298.2638, 397.8765, 500.4055, 597.6101, 698.8027, 796.3088, 897.7976, 1000.2188, 1097.3269]
weingarten: Gabler organ in Weingarten (1750). 1/11-(synt.+Pyth. comma) meantone
[85.0701, 195.7343, 306.3985, 391.4686, 502.1328, 587.2029, 697.8672, 782.9372, 893.6015, 1004.2657, 1089.3358]
weingarten2: Temperament of Gabler organ in Weingarten after restauration (1983)
[95.1125, 196.09, 301.4663, 394.135, 499.0225, 591.2025, 698.045, 798.045, 895.1125, 1001.4662, 1091.2025]
wendell1r: Rational version of wendell1.scl by Gene Ward Smith
[94.2002, 198.2502, 298.1102, 393.7369, 498.045, 597.6469, 699.5752, 796.1552, 895.8221, 1000.0652, 1095.6919]
wendell2: Robert Wendell's Very Mild Synchronous well-temperament (2003)
[94.931, 198.797, 298.841, 394.1136, 498.445, 598.024, 700.058, 796.886, 895.759, 1000.796, 1096.069]
wendell2p: 1/5P version of wendell2.scl, Op de Coul
[94.917, 199.218, 298.827, 393.744, 498.045, 597.654, 701.955, 796.872, 896.481, 1000.782, 1095.699]
wendell3: Robert Wendell Modern Well (2002)
[96.0783, 197.06, 298.0417, 394.12, 500.005, 595.0967, 699.015, 797.06, 895.105, 999.0233, 1094.115]
wendell4: Robert Wendell's ET equivalent (2002)
[96.485, 199.61, 298.435, 399.22, 498.045, 598.83, 697.655, 798.44, 897.265, 1000.39, 1096.875]
wendell6: Robert Wendell's RPW Synchronous well (2002)
[94.51, 197.65, 298.425, 392.94, 498.04, 596.855, 699.345, 796.47, 895.295, 1000.385, 1094.895]
wendell7: Robert Wendell Tweaked Synchronous Well
[93.825, 197.54, 297.745, 392.94, 498.045, 596.86, 698.815, 795.79, 894.995, 999.71, 1094.905]
werck3: Andreas Werckmeister's temperament III (the most famous one, 1681)
[90.225, 192.18, 294.135, 390.225, 498.045, 588.27, 696.09, 792.18, 888.27, 996.09, 1092.18]
werck3_mod: Modified Werckmeister III with B between E and F#, Nijsse (1997), organ Soest
[90.225, 192.18, 294.135, 390.225, 498.045, 588.27, 696.09, 792.18, 888.27, 996.09, 1089.2475]
werck3_turck: Daniel Gottlob Türck's 1806 Werckmeister III compiled by Andreas Sparschuh, TL 28-05-2010
[90.225, 195.1804, 294.135, 387.738, 498.045, 588.27, 701.6911, 792.18, 885.783, 996.09, 1089.693]
werck4: Andreas Werckmeister's temperament IV
[82.405, 196.09, 294.135, 392.18, 498.045, 588.27, 694.135, 784.36, 890.225, 1003.91, 1086.315]
werck5: Andreas Werckmeister's temperament V
[96.09, 203.91, 300.0, 396.09, 503.91, 600.0, 701.955, 792.18, 900.0, 1001.955, 1098.045]
werck6: Andreas Werckmeister's "septenarius" tuning VI, D is probably erroneous
[90.6612, 186.3339, 298.0652, 395.1692, 498.045, 594.9225, 697.5442, 792.6162, 893.2141, 1000.0202, 1097.1242]
werck6_cor: Corrected Septenarius with D string length=175 by Tom Dent (2006)
[90.6612, 196.1985, 298.0652, 395.1692, 498.045, 594.9225, 697.5442, 792.6162, 893.2141, 1000.0202, 1097.1242]
werck6_dup: Andreas Werckmeister's VI in the interpretation by Dupont (1935)
[90.225, 187.153, 297.486, 394.414, 498.045, 594.973, 698.604, 792.18, 892.459, 999.441, 1096.369]
wiese1: Christian Ludwig Gustav von Wiese's 1/2P-comma temperament no. 1 (1793)
[90.225, 203.91, 294.135, 407.82, 498.045, 599.9724, 701.955, 792.18, 905.865, 996.09, 1109.775]
wiese3: Christian Ludwig Gustav von Wiese's 1/2P-comma temperament no. 3 (1793). Also Grammateus (1518) according to Ratte, p. 249
[101.955, 203.91, 305.865, 407.82, 498.045, 600.0, 701.955, 803.91, 905.865, 996.09, 1109.775]
wilson_class: Wilson's Class Scale, 9 July 1967
[70.6724, 196.1985, 266.8709, 386.3137, 498.045, 582.5122, 653.1846, 813.6863, 884.3587, 968.8259, 1080.5572]
young: Thomas Young well temperament (1807), also Luigi Malerbi nr.2 (1794)
[90.225, 196.09, 294.135, 392.18, 498.045, 588.27, 698.045, 792.18, 894.135, 996.09, 1090.225]
young-lm_guitar: LaMonte Young, tuning of For Guitar '58. 1/1 March '92, inv.of Mersenne lute 1
[111.7313, 182.4037, 315.6413, 386.3137, 498.045, 590.2237, 701.955, 813.6863, 884.3587, 1017.5963, 1088.2687]